Answer
Verified
428.7k+ views
Hint: Here, we are required to find the value of $\lambda $, where it is given that a tangent touches the circle at point $\left( {a,b} \right)$ and the equations of both the tangent as well as the circle are given. Since, the point of contact is the intersection of both the tangent as well as the circle, it satisfies both the equations. Hence, we will substitute $\left( {x,y} \right) = \left( {a,b} \right)$ in both the equations of the circle as well as the tangent, and then, equating both of them, we will find the required value of $\lambda $.
Complete step-by-step answer:
Equation of circle: \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\], where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle.
The general equation of a circle is in the form of \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] , where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle.
According to the question,
Equation of the circle is \[{x^2} + {y^2} = {r^2}\]
Hence, this can be written in the form of: \[{\left( {x - 0} \right)^2} + {\left( {y - 0} \right)^2} = {r^2}\]
This shows that $\left( {h,k} \right) = \left( {0,0} \right)$
Hence, the centre of the circle lies on the origin.
Now, when a tangent touches the circumference of a circle at point $\left( {a,b} \right)$,
Then, this point should satisfy the equation of the circle as well as the equation of the tangent.
This is because of the fact that this point acts as an intersection between the tangent and the circle, hence, satisfying the equation of both of them.
Therefore, since the equation of the circle is \[{x^2} + {y^2} = {r^2}\] and the tangent passes through it at the point $\left( {a,b} \right)$, hence, substituting $\left( {x,y} \right) = \left( {a,b} \right)$ in the equation of circle, we get,
\[{a^2} + {b^2} = {r^2}\]…………………………$\left( 1 \right)$
Now, according to the question,
Equation of the tangent is $ax + by - \lambda = 0$
Since, the point $\left( {a,b} \right)$ acts as an intersection, it must satisfy the equation of the tangent as well.
Therefore, substituting $\left( {x,y} \right) = \left( {a,b} \right)$ in the equation of the tangent $ax + by - \lambda = 0$, we get,
$a \cdot a + b \cdot b - \lambda = 0$
$ \Rightarrow {a^2} + {b^2} = \lambda $……………………$\left( 2 \right)$
Now, equating the equations $\left( 1 \right)$ and $\left( 2 \right)$, we get,
\[\lambda = {r^2}\]
Therefore, the required value of \[\lambda = {r^2}\]
Hence, option C is the correct answer.
Note: A circle is a shape drawn on a plane which consists of all the points which are equidistant from the given centre. The distance between each point on the circumference of the circle and the centre is called its radius. In a standard form, the equation of a circle is always written in the form of \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] , where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle. Also, a tangent drawn to a circle is defined as a straight line which touches the circle at a single point on its circumference. The point where the tangent touches the circle is called the point of contact.
Complete step-by-step answer:
Equation of circle: \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\], where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle.
The general equation of a circle is in the form of \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] , where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle.
According to the question,
Equation of the circle is \[{x^2} + {y^2} = {r^2}\]
Hence, this can be written in the form of: \[{\left( {x - 0} \right)^2} + {\left( {y - 0} \right)^2} = {r^2}\]
This shows that $\left( {h,k} \right) = \left( {0,0} \right)$
Hence, the centre of the circle lies on the origin.
Now, when a tangent touches the circumference of a circle at point $\left( {a,b} \right)$,
Then, this point should satisfy the equation of the circle as well as the equation of the tangent.
This is because of the fact that this point acts as an intersection between the tangent and the circle, hence, satisfying the equation of both of them.
Therefore, since the equation of the circle is \[{x^2} + {y^2} = {r^2}\] and the tangent passes through it at the point $\left( {a,b} \right)$, hence, substituting $\left( {x,y} \right) = \left( {a,b} \right)$ in the equation of circle, we get,
\[{a^2} + {b^2} = {r^2}\]…………………………$\left( 1 \right)$
Now, according to the question,
Equation of the tangent is $ax + by - \lambda = 0$
Since, the point $\left( {a,b} \right)$ acts as an intersection, it must satisfy the equation of the tangent as well.
Therefore, substituting $\left( {x,y} \right) = \left( {a,b} \right)$ in the equation of the tangent $ax + by - \lambda = 0$, we get,
$a \cdot a + b \cdot b - \lambda = 0$
$ \Rightarrow {a^2} + {b^2} = \lambda $……………………$\left( 2 \right)$
Now, equating the equations $\left( 1 \right)$ and $\left( 2 \right)$, we get,
\[\lambda = {r^2}\]
Therefore, the required value of \[\lambda = {r^2}\]
Hence, option C is the correct answer.
Note: A circle is a shape drawn on a plane which consists of all the points which are equidistant from the given centre. The distance between each point on the circumference of the circle and the centre is called its radius. In a standard form, the equation of a circle is always written in the form of \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] , where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle. Also, a tangent drawn to a circle is defined as a straight line which touches the circle at a single point on its circumference. The point where the tangent touches the circle is called the point of contact.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What percentage of the solar systems mass is found class 8 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE