# The equation of the straight line joining the point $\left( a,b \right)$ to the point of

intersection of the lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ is

(a) ${{a}^{2}}y-{{b}^{2}}x=ab\left( a-b \right)$

(b) ${{a}^{2}}x+{{b}^{2}}y=ab\left( a+b \right)$

(c) ${{a}^{2}}y+{{b}^{2}}x=ab$

(d) ${{a}^{2}}x+{{b}^{2}}y=ab\left( a-b \right)$

Last updated date: 23rd Mar 2023

•

Total views: 312k

•

Views today: 6.89k

Answer

Verified

312k+ views

Hint: Solve the 2 line equations to find the point of intersection. Substitute these intersection points along with the given coordinate points back into the line equations.

The two equations given in the question are,

$\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$

The given equations can be rearranged as,

$\dfrac{x}{a}+\dfrac{y}{b}-1=0$ and $\dfrac{x}{b}+\dfrac{y}{a}-1=0$

The point of intersection of these two lines can be obtained by solving the equations and finding the values of \[x\] and \[y\]. Subtracting the equations,

\[\left( \dfrac{x}{a}+\dfrac{y}{b}-1 \right)-\left( \dfrac{x}{b}+\dfrac{y}{a}-1 \right)=0\]

Taking similar terms together,

\[\left( \dfrac{x}{a}-\dfrac{x}{b} \right)+\left( \dfrac{y}{b}-\dfrac{y}{a} \right)+(-1+1)=0\]

Taking out the common terms,

\[\begin{align}

& x\left( \dfrac{1}{a}-\dfrac{1}{b} \right)+y\left( \dfrac{1}{b}-\dfrac{1}{a} \right)=0 \\

& x\left( \dfrac{1}{a}-\dfrac{1}{b} \right)-y\left( \dfrac{1}{a}-\dfrac{1}{b} \right)=0 \\

\end{align}\]

Again, taking out the common term, we get,

\[\begin{align}

& \left( x-y \right)\left( \dfrac{1}{a}-\dfrac{1}{b} \right)=0 \\

& \left( x-y \right)=0 \\

& x=y \\

\end{align}\]

Now we can substitute \[x=y\] in one of the equations of the lines, say $\dfrac{x}{a}+\dfrac{y}{b}-1=0$,

$\begin{align}

& \dfrac{y}{a}+\dfrac{y}{b}-1=0 \\

& \Rightarrow y\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-1=0 \\

& \Rightarrow y\left( \dfrac{1}{a}+\dfrac{1}{b} \right)=1 \\

\end{align}$

Taking the LCM,

$\begin{align}

& \Rightarrow y\left( \dfrac{b+a}{ab} \right)=1 \\

& \Rightarrow y=\dfrac{1}{\left( \dfrac{b+a}{ab} \right)} \\

& \Rightarrow y=\left( \dfrac{ab}{b+a} \right) \\

& \Rightarrow y=\left( \dfrac{ab}{a+b} \right) \\

\end{align}$

Since \[x=y\], we get the coordinates as$x=y=\left( \dfrac{ab}{a+b} \right)$. Therefore, we can write the coordinates of the point of intersection of the lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ as $\left[ \left( \dfrac{ab}{a+b} \right),\left( \dfrac{ab}{a+b} \right) \right]$.

The equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given by,

\[\begin{align}

& y-{{y}_{1}}=m(x-{{x}_{1}}) \\

& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\

\end{align}\]

So, the equation of the straight line joining the point $\left( a,b \right)$ and $\left[ \left( \dfrac{ab}{a+b} \right),\left( \dfrac{ab}{a+b} \right) \right]$ can be found as,

\[y-b=\left( \dfrac{\dfrac{ab}{a+b}-b}{\dfrac{ab}{a+b}-a} \right)\left( x-a \right)\]

Taking the LCM of the terms in the numerator and denominator,

\[y-b=\left( \dfrac{\dfrac{ab-b(a+b)}{a+b}}{\dfrac{ab-a(a+b)}{a+b}} \right)\left( x-a \right)\]

Opening the brackets and simplifying the terms,

\[\begin{align}

& y-b=\left( \dfrac{\dfrac{ab-ba-{{b}^{2}})}{a+b}}{\dfrac{ab-{{a}^{2}}-ab)}{a+b}} \right)\left( x-a \right) \\

& y-b=\left( \dfrac{\dfrac{-{{b}^{2}}}{a+b}}{\dfrac{-{{a}^{2}}}{a+b}} \right)\left( x-a \right) \\

& y-b=\left( \dfrac{{{b}^{2}}}{{{a}^{2}}} \right)\left( x-a \right) \\

& {{a}^{2}}(y-b)={{b}^{2}}(x-a) \\

& {{a}^{2}}y-{{a}^{2}}b={{b}^{2}}x-{{b}^{2}}a \\

& {{b}^{2}}x-{{a}^{2}}y={{b}^{2}}a-{{a}^{2}}b \\

& {{b}^{2}}x-{{a}^{2}}y=ab(b-a) \\

\end{align}\]

Looking at the given options, we can rewrite the obtained equation as

\[\begin{align}

& -{{b}^{2}}x+{{a}^{2}}y=-ab(b-a) \\

& {{a}^{2}}y-{{b}^{2}}x=ab(a-b) \\

\end{align}\]

Therefore, we get option (a) as the correct answer.

Note: The equation of a straight line passing through the point of intersection of two lines, say A and B can be written as \[A+\lambda B=0\]. Therefore, the equation of the straight line passing through the point of intersection of the given lines $\dfrac{x}{a}+\dfrac{y}{b}-1=0$ and $\dfrac{x}{b}+\dfrac{y}{a}-1=0$ can be written as, $\left( \dfrac{x}{a}+\dfrac{y}{b}-1 \right)+\lambda \left( \dfrac{x}{b}+\dfrac{y}{a}-1 \right)=0$. Since the required straight line passes through point $\left( a,b \right)$, we can substitute the coordinates in the above equation and find the value of $\lambda $. This method is lengthy as it has complex terms.

The two equations given in the question are,

$\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$

The given equations can be rearranged as,

$\dfrac{x}{a}+\dfrac{y}{b}-1=0$ and $\dfrac{x}{b}+\dfrac{y}{a}-1=0$

The point of intersection of these two lines can be obtained by solving the equations and finding the values of \[x\] and \[y\]. Subtracting the equations,

\[\left( \dfrac{x}{a}+\dfrac{y}{b}-1 \right)-\left( \dfrac{x}{b}+\dfrac{y}{a}-1 \right)=0\]

Taking similar terms together,

\[\left( \dfrac{x}{a}-\dfrac{x}{b} \right)+\left( \dfrac{y}{b}-\dfrac{y}{a} \right)+(-1+1)=0\]

Taking out the common terms,

\[\begin{align}

& x\left( \dfrac{1}{a}-\dfrac{1}{b} \right)+y\left( \dfrac{1}{b}-\dfrac{1}{a} \right)=0 \\

& x\left( \dfrac{1}{a}-\dfrac{1}{b} \right)-y\left( \dfrac{1}{a}-\dfrac{1}{b} \right)=0 \\

\end{align}\]

Again, taking out the common term, we get,

\[\begin{align}

& \left( x-y \right)\left( \dfrac{1}{a}-\dfrac{1}{b} \right)=0 \\

& \left( x-y \right)=0 \\

& x=y \\

\end{align}\]

Now we can substitute \[x=y\] in one of the equations of the lines, say $\dfrac{x}{a}+\dfrac{y}{b}-1=0$,

$\begin{align}

& \dfrac{y}{a}+\dfrac{y}{b}-1=0 \\

& \Rightarrow y\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-1=0 \\

& \Rightarrow y\left( \dfrac{1}{a}+\dfrac{1}{b} \right)=1 \\

\end{align}$

Taking the LCM,

$\begin{align}

& \Rightarrow y\left( \dfrac{b+a}{ab} \right)=1 \\

& \Rightarrow y=\dfrac{1}{\left( \dfrac{b+a}{ab} \right)} \\

& \Rightarrow y=\left( \dfrac{ab}{b+a} \right) \\

& \Rightarrow y=\left( \dfrac{ab}{a+b} \right) \\

\end{align}$

Since \[x=y\], we get the coordinates as$x=y=\left( \dfrac{ab}{a+b} \right)$. Therefore, we can write the coordinates of the point of intersection of the lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ as $\left[ \left( \dfrac{ab}{a+b} \right),\left( \dfrac{ab}{a+b} \right) \right]$.

The equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given by,

\[\begin{align}

& y-{{y}_{1}}=m(x-{{x}_{1}}) \\

& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\

\end{align}\]

So, the equation of the straight line joining the point $\left( a,b \right)$ and $\left[ \left( \dfrac{ab}{a+b} \right),\left( \dfrac{ab}{a+b} \right) \right]$ can be found as,

\[y-b=\left( \dfrac{\dfrac{ab}{a+b}-b}{\dfrac{ab}{a+b}-a} \right)\left( x-a \right)\]

Taking the LCM of the terms in the numerator and denominator,

\[y-b=\left( \dfrac{\dfrac{ab-b(a+b)}{a+b}}{\dfrac{ab-a(a+b)}{a+b}} \right)\left( x-a \right)\]

Opening the brackets and simplifying the terms,

\[\begin{align}

& y-b=\left( \dfrac{\dfrac{ab-ba-{{b}^{2}})}{a+b}}{\dfrac{ab-{{a}^{2}}-ab)}{a+b}} \right)\left( x-a \right) \\

& y-b=\left( \dfrac{\dfrac{-{{b}^{2}}}{a+b}}{\dfrac{-{{a}^{2}}}{a+b}} \right)\left( x-a \right) \\

& y-b=\left( \dfrac{{{b}^{2}}}{{{a}^{2}}} \right)\left( x-a \right) \\

& {{a}^{2}}(y-b)={{b}^{2}}(x-a) \\

& {{a}^{2}}y-{{a}^{2}}b={{b}^{2}}x-{{b}^{2}}a \\

& {{b}^{2}}x-{{a}^{2}}y={{b}^{2}}a-{{a}^{2}}b \\

& {{b}^{2}}x-{{a}^{2}}y=ab(b-a) \\

\end{align}\]

Looking at the given options, we can rewrite the obtained equation as

\[\begin{align}

& -{{b}^{2}}x+{{a}^{2}}y=-ab(b-a) \\

& {{a}^{2}}y-{{b}^{2}}x=ab(a-b) \\

\end{align}\]

Therefore, we get option (a) as the correct answer.

Note: The equation of a straight line passing through the point of intersection of two lines, say A and B can be written as \[A+\lambda B=0\]. Therefore, the equation of the straight line passing through the point of intersection of the given lines $\dfrac{x}{a}+\dfrac{y}{b}-1=0$ and $\dfrac{x}{b}+\dfrac{y}{a}-1=0$ can be written as, $\left( \dfrac{x}{a}+\dfrac{y}{b}-1 \right)+\lambda \left( \dfrac{x}{b}+\dfrac{y}{a}-1 \right)=0$. Since the required straight line passes through point $\left( a,b \right)$, we can substitute the coordinates in the above equation and find the value of $\lambda $. This method is lengthy as it has complex terms.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE