
The equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
\[\begin{align}
& A)2x+6y+12z=13 \\
& B)x+3y+6z=-7 \\
& C)x+3y+6z=7 \\
& D)2x+6y+12z=-13 \\
\end{align}\]
Answer
510.6k+ views
Hint: We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\]. So, we should write the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. It is also given that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\]. By using the concept, we can find the value of \[\lambda \]. By using this value of \[\lambda \], we can find the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
Complete step-by-step answer:
We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\].
Now we should find the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. \[\begin{align}
& \Rightarrow 2x-5y+z+\lambda \left( x+y+4z \right)=3+5\lambda \\
& \Rightarrow 2x-5y+z+\lambda x+\lambda y+4\lambda z=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0....(1) \\
\end{align}\]
From the question, it is clear that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\].
So, it is clear that the planes \[\left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0\] and \[x+3y+6z=1\] are parallel.
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}.....(2)\]
So, let us assume
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}=k.....(3)\]
So, from equation (3), we can write
\[\Rightarrow \dfrac{2+\lambda }{1}=k\]
By using cross multiplication, we get
\[\Rightarrow 2+\lambda =k....(4)\]
Now, from equation (3), we get
\[\Rightarrow \dfrac{\lambda -5}{3}=k\]
By using cross multiplication, we get
\[\Rightarrow \lambda -5=3k....(5)\]
Now let us substitute equation (5) in equation (4), then we get
\[\begin{align}
& \Rightarrow \lambda -5=3\left( 2+\lambda \right) \\
& \Rightarrow \lambda -5=6+3\lambda \\
& \Rightarrow 2\lambda =-11 \\
& \Rightarrow \lambda =\dfrac{-11}{2}.....(6) \\
\end{align}\]
Now we will substitute equation (6) in equation (1), then we get
\[\begin{align}
& \Rightarrow \left( 2-\dfrac{11}{2} \right)x+\left( -\dfrac{11}{2}-5 \right)y+\left( 4\left( \dfrac{-11}{2} \right)+1 \right)z-3-5\left( \dfrac{-11}{2} \right)=0 \\
& \Rightarrow \left( \dfrac{4-11}{2} \right)x+\left( \dfrac{-11-10}{2} \right)y+\left( 2(-11)+1 \right)z-3+\dfrac{55}{2}=0 \\
& \Rightarrow \left( \dfrac{-7}{2} \right)x-\dfrac{21y}{2}-21z+\dfrac{49}{2}=0 \\
& \Rightarrow \dfrac{-7x-21y-42z+49}{2}=0 \\
& \Rightarrow -7x-21y-42z+49=0 \\
& \Rightarrow -x-3y-6z+7=0 \\
& \Rightarrow x+3y+6z-7=0 \\
& \Rightarrow x+3y+6z=7.....(7) \\
\end{align}\]
So, from equation (7) we will get that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\] is equal to \[x+3y+6z=7\].
So, the correct answer is “Option C”.
Note: Students have a misconception that that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=\dfrac{{{d}_{1}}}{{{d}_{2}}}\]. But we know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. So, students should avoid this misconception.
Complete step-by-step answer:
We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\].
Now we should find the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. \[\begin{align}
& \Rightarrow 2x-5y+z+\lambda \left( x+y+4z \right)=3+5\lambda \\
& \Rightarrow 2x-5y+z+\lambda x+\lambda y+4\lambda z=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0....(1) \\
\end{align}\]
From the question, it is clear that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\].
So, it is clear that the planes \[\left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0\] and \[x+3y+6z=1\] are parallel.
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}.....(2)\]
So, let us assume
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}=k.....(3)\]
So, from equation (3), we can write
\[\Rightarrow \dfrac{2+\lambda }{1}=k\]
By using cross multiplication, we get
\[\Rightarrow 2+\lambda =k....(4)\]
Now, from equation (3), we get
\[\Rightarrow \dfrac{\lambda -5}{3}=k\]
By using cross multiplication, we get
\[\Rightarrow \lambda -5=3k....(5)\]
Now let us substitute equation (5) in equation (4), then we get
\[\begin{align}
& \Rightarrow \lambda -5=3\left( 2+\lambda \right) \\
& \Rightarrow \lambda -5=6+3\lambda \\
& \Rightarrow 2\lambda =-11 \\
& \Rightarrow \lambda =\dfrac{-11}{2}.....(6) \\
\end{align}\]
Now we will substitute equation (6) in equation (1), then we get
\[\begin{align}
& \Rightarrow \left( 2-\dfrac{11}{2} \right)x+\left( -\dfrac{11}{2}-5 \right)y+\left( 4\left( \dfrac{-11}{2} \right)+1 \right)z-3-5\left( \dfrac{-11}{2} \right)=0 \\
& \Rightarrow \left( \dfrac{4-11}{2} \right)x+\left( \dfrac{-11-10}{2} \right)y+\left( 2(-11)+1 \right)z-3+\dfrac{55}{2}=0 \\
& \Rightarrow \left( \dfrac{-7}{2} \right)x-\dfrac{21y}{2}-21z+\dfrac{49}{2}=0 \\
& \Rightarrow \dfrac{-7x-21y-42z+49}{2}=0 \\
& \Rightarrow -7x-21y-42z+49=0 \\
& \Rightarrow -x-3y-6z+7=0 \\
& \Rightarrow x+3y+6z-7=0 \\
& \Rightarrow x+3y+6z=7.....(7) \\
\end{align}\]
So, from equation (7) we will get that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\] is equal to \[x+3y+6z=7\].
So, the correct answer is “Option C”.
Note: Students have a misconception that that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=\dfrac{{{d}_{1}}}{{{d}_{2}}}\]. But we know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. So, students should avoid this misconception.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
