
The equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
\[\begin{align}
& A)2x+6y+12z=13 \\
& B)x+3y+6z=-7 \\
& C)x+3y+6z=7 \\
& D)2x+6y+12z=-13 \\
\end{align}\]
Answer
592.2k+ views
Hint: We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\]. So, we should write the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. It is also given that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\]. By using the concept, we can find the value of \[\lambda \]. By using this value of \[\lambda \], we can find the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
Complete step-by-step answer:
We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\].
Now we should find the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. \[\begin{align}
& \Rightarrow 2x-5y+z+\lambda \left( x+y+4z \right)=3+5\lambda \\
& \Rightarrow 2x-5y+z+\lambda x+\lambda y+4\lambda z=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0....(1) \\
\end{align}\]
From the question, it is clear that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\].
So, it is clear that the planes \[\left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0\] and \[x+3y+6z=1\] are parallel.
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}.....(2)\]
So, let us assume
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}=k.....(3)\]
So, from equation (3), we can write
\[\Rightarrow \dfrac{2+\lambda }{1}=k\]
By using cross multiplication, we get
\[\Rightarrow 2+\lambda =k....(4)\]
Now, from equation (3), we get
\[\Rightarrow \dfrac{\lambda -5}{3}=k\]
By using cross multiplication, we get
\[\Rightarrow \lambda -5=3k....(5)\]
Now let us substitute equation (5) in equation (4), then we get
\[\begin{align}
& \Rightarrow \lambda -5=3\left( 2+\lambda \right) \\
& \Rightarrow \lambda -5=6+3\lambda \\
& \Rightarrow 2\lambda =-11 \\
& \Rightarrow \lambda =\dfrac{-11}{2}.....(6) \\
\end{align}\]
Now we will substitute equation (6) in equation (1), then we get
\[\begin{align}
& \Rightarrow \left( 2-\dfrac{11}{2} \right)x+\left( -\dfrac{11}{2}-5 \right)y+\left( 4\left( \dfrac{-11}{2} \right)+1 \right)z-3-5\left( \dfrac{-11}{2} \right)=0 \\
& \Rightarrow \left( \dfrac{4-11}{2} \right)x+\left( \dfrac{-11-10}{2} \right)y+\left( 2(-11)+1 \right)z-3+\dfrac{55}{2}=0 \\
& \Rightarrow \left( \dfrac{-7}{2} \right)x-\dfrac{21y}{2}-21z+\dfrac{49}{2}=0 \\
& \Rightarrow \dfrac{-7x-21y-42z+49}{2}=0 \\
& \Rightarrow -7x-21y-42z+49=0 \\
& \Rightarrow -x-3y-6z+7=0 \\
& \Rightarrow x+3y+6z-7=0 \\
& \Rightarrow x+3y+6z=7.....(7) \\
\end{align}\]
So, from equation (7) we will get that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\] is equal to \[x+3y+6z=7\].
So, the correct answer is “Option C”.
Note: Students have a misconception that that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=\dfrac{{{d}_{1}}}{{{d}_{2}}}\]. But we know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. So, students should avoid this misconception.
Complete step-by-step answer:
We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\].
Now we should find the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. \[\begin{align}
& \Rightarrow 2x-5y+z+\lambda \left( x+y+4z \right)=3+5\lambda \\
& \Rightarrow 2x-5y+z+\lambda x+\lambda y+4\lambda z=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0....(1) \\
\end{align}\]
From the question, it is clear that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\].
So, it is clear that the planes \[\left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0\] and \[x+3y+6z=1\] are parallel.
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}.....(2)\]
So, let us assume
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}=k.....(3)\]
So, from equation (3), we can write
\[\Rightarrow \dfrac{2+\lambda }{1}=k\]
By using cross multiplication, we get
\[\Rightarrow 2+\lambda =k....(4)\]
Now, from equation (3), we get
\[\Rightarrow \dfrac{\lambda -5}{3}=k\]
By using cross multiplication, we get
\[\Rightarrow \lambda -5=3k....(5)\]
Now let us substitute equation (5) in equation (4), then we get
\[\begin{align}
& \Rightarrow \lambda -5=3\left( 2+\lambda \right) \\
& \Rightarrow \lambda -5=6+3\lambda \\
& \Rightarrow 2\lambda =-11 \\
& \Rightarrow \lambda =\dfrac{-11}{2}.....(6) \\
\end{align}\]
Now we will substitute equation (6) in equation (1), then we get
\[\begin{align}
& \Rightarrow \left( 2-\dfrac{11}{2} \right)x+\left( -\dfrac{11}{2}-5 \right)y+\left( 4\left( \dfrac{-11}{2} \right)+1 \right)z-3-5\left( \dfrac{-11}{2} \right)=0 \\
& \Rightarrow \left( \dfrac{4-11}{2} \right)x+\left( \dfrac{-11-10}{2} \right)y+\left( 2(-11)+1 \right)z-3+\dfrac{55}{2}=0 \\
& \Rightarrow \left( \dfrac{-7}{2} \right)x-\dfrac{21y}{2}-21z+\dfrac{49}{2}=0 \\
& \Rightarrow \dfrac{-7x-21y-42z+49}{2}=0 \\
& \Rightarrow -7x-21y-42z+49=0 \\
& \Rightarrow -x-3y-6z+7=0 \\
& \Rightarrow x+3y+6z-7=0 \\
& \Rightarrow x+3y+6z=7.....(7) \\
\end{align}\]
So, from equation (7) we will get that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\] is equal to \[x+3y+6z=7\].
So, the correct answer is “Option C”.
Note: Students have a misconception that that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=\dfrac{{{d}_{1}}}{{{d}_{2}}}\]. But we know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. So, students should avoid this misconception.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

