
The equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
\[\begin{align}
& A)2x+6y+12z=13 \\
& B)x+3y+6z=-7 \\
& C)x+3y+6z=7 \\
& D)2x+6y+12z=-13 \\
\end{align}\]
Answer
577.5k+ views
Hint: We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\]. So, we should write the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. It is also given that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\]. By using the concept, we can find the value of \[\lambda \]. By using this value of \[\lambda \], we can find the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
Complete step-by-step answer:
We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\].
Now we should find the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. \[\begin{align}
& \Rightarrow 2x-5y+z+\lambda \left( x+y+4z \right)=3+5\lambda \\
& \Rightarrow 2x-5y+z+\lambda x+\lambda y+4\lambda z=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0....(1) \\
\end{align}\]
From the question, it is clear that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\].
So, it is clear that the planes \[\left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0\] and \[x+3y+6z=1\] are parallel.
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}.....(2)\]
So, let us assume
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}=k.....(3)\]
So, from equation (3), we can write
\[\Rightarrow \dfrac{2+\lambda }{1}=k\]
By using cross multiplication, we get
\[\Rightarrow 2+\lambda =k....(4)\]
Now, from equation (3), we get
\[\Rightarrow \dfrac{\lambda -5}{3}=k\]
By using cross multiplication, we get
\[\Rightarrow \lambda -5=3k....(5)\]
Now let us substitute equation (5) in equation (4), then we get
\[\begin{align}
& \Rightarrow \lambda -5=3\left( 2+\lambda \right) \\
& \Rightarrow \lambda -5=6+3\lambda \\
& \Rightarrow 2\lambda =-11 \\
& \Rightarrow \lambda =\dfrac{-11}{2}.....(6) \\
\end{align}\]
Now we will substitute equation (6) in equation (1), then we get
\[\begin{align}
& \Rightarrow \left( 2-\dfrac{11}{2} \right)x+\left( -\dfrac{11}{2}-5 \right)y+\left( 4\left( \dfrac{-11}{2} \right)+1 \right)z-3-5\left( \dfrac{-11}{2} \right)=0 \\
& \Rightarrow \left( \dfrac{4-11}{2} \right)x+\left( \dfrac{-11-10}{2} \right)y+\left( 2(-11)+1 \right)z-3+\dfrac{55}{2}=0 \\
& \Rightarrow \left( \dfrac{-7}{2} \right)x-\dfrac{21y}{2}-21z+\dfrac{49}{2}=0 \\
& \Rightarrow \dfrac{-7x-21y-42z+49}{2}=0 \\
& \Rightarrow -7x-21y-42z+49=0 \\
& \Rightarrow -x-3y-6z+7=0 \\
& \Rightarrow x+3y+6z-7=0 \\
& \Rightarrow x+3y+6z=7.....(7) \\
\end{align}\]
So, from equation (7) we will get that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\] is equal to \[x+3y+6z=7\].
So, the correct answer is “Option C”.
Note: Students have a misconception that that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=\dfrac{{{d}_{1}}}{{{d}_{2}}}\]. But we know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. So, students should avoid this misconception.
Complete step-by-step answer:
We know that the equation of the plane containing the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] is equal to \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}+\lambda \left( {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}} \right)=0\].
Now we should find the plane containing the lines \[2x-5y+z=3;x+y+4z=5\]. \[\begin{align}
& \Rightarrow 2x-5y+z+\lambda \left( x+y+4z \right)=3+5\lambda \\
& \Rightarrow 2x-5y+z+\lambda x+\lambda y+4\lambda z=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)=3+5\lambda \\
& \Rightarrow \left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0....(1) \\
\end{align}\]
From the question, it is clear that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\].
We know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\].
So, it is clear that the planes \[\left( 2+\lambda \right)x+\left( \lambda -5 \right)y+\left( 4\lambda +1 \right)-3-5\lambda =0\] and \[x+3y+6z=1\] are parallel.
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}.....(2)\]
So, let us assume
\[\Rightarrow \dfrac{2+\lambda }{1}=\dfrac{\lambda -5}{3}=\dfrac{4\lambda +1}{6}=k.....(3)\]
So, from equation (3), we can write
\[\Rightarrow \dfrac{2+\lambda }{1}=k\]
By using cross multiplication, we get
\[\Rightarrow 2+\lambda =k....(4)\]
Now, from equation (3), we get
\[\Rightarrow \dfrac{\lambda -5}{3}=k\]
By using cross multiplication, we get
\[\Rightarrow \lambda -5=3k....(5)\]
Now let us substitute equation (5) in equation (4), then we get
\[\begin{align}
& \Rightarrow \lambda -5=3\left( 2+\lambda \right) \\
& \Rightarrow \lambda -5=6+3\lambda \\
& \Rightarrow 2\lambda =-11 \\
& \Rightarrow \lambda =\dfrac{-11}{2}.....(6) \\
\end{align}\]
Now we will substitute equation (6) in equation (1), then we get
\[\begin{align}
& \Rightarrow \left( 2-\dfrac{11}{2} \right)x+\left( -\dfrac{11}{2}-5 \right)y+\left( 4\left( \dfrac{-11}{2} \right)+1 \right)z-3-5\left( \dfrac{-11}{2} \right)=0 \\
& \Rightarrow \left( \dfrac{4-11}{2} \right)x+\left( \dfrac{-11-10}{2} \right)y+\left( 2(-11)+1 \right)z-3+\dfrac{55}{2}=0 \\
& \Rightarrow \left( \dfrac{-7}{2} \right)x-\dfrac{21y}{2}-21z+\dfrac{49}{2}=0 \\
& \Rightarrow \dfrac{-7x-21y-42z+49}{2}=0 \\
& \Rightarrow -7x-21y-42z+49=0 \\
& \Rightarrow -x-3y-6z+7=0 \\
& \Rightarrow x+3y+6z-7=0 \\
& \Rightarrow x+3y+6z=7.....(7) \\
\end{align}\]
So, from equation (7) we will get that the equation of the plane containing the lines \[2x-5y+z=3;x+y+4z=5\] and parallel to the plane \[x+3y+6z=1\] is equal to \[x+3y+6z=7\].
So, the correct answer is “Option C”.
Note: Students have a misconception that that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=\dfrac{{{d}_{1}}}{{{d}_{2}}}\]. But we know that the planes \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0\] are said to be parallel, then \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]. So, students should avoid this misconception.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

