
The equation of the image of the circle ${x^2} + {y^2} + 16x - 24y + 183 = 0$ by the line mirror 4x+7y+13=0 is:
A. ${x^2} + {y^2} + 32x - 4y + 235 = 0$
B. ${x^2} + {y^2} + 32x + 4y - 235 = 0$
C. ${x^2} + {y^2} + 32x - 4y - 235 = 0$
D. ${x^2} + {y^2} + 32x + 4y + 235 = 0$
Answer
579k+ views
Hint: In this question, to find the image of the circle, we will find the image of the centre of the circle by the given line and radius will be the same. To find the image of a point ,we will write the equation of the line in symmetrical form and then find the image of the centre point of the circle.
Complete step by step answer:
The given equation of circle is ${x^2} + {y^2} + 16x - 24y + 183 = 0$ , we will convert this in standard form to find the centre of the circle.
The given circle equation can be written as:
${x^2} + 16x + 64 + {y^2} - 24y + 144 + - 25 = 0$
$ \Rightarrow {(x + 8)^2} + {(y - 12)^2} = 25 = {5^2}$ (1)
We know that the standard form of circle equation is given as:
$ \Rightarrow {(x - a)^2} + {(y - b)^2} = {r^2}$ (2)
Comparing equation 1 and 2, we have:
Centre: (-8 , 12) , radius = 5cm.
Image of the centre by line 4x+7y+13 =0 is given by:
$\dfrac{{x - ( - 8)}}{4} = \dfrac{{y - 12}}{7} = \dfrac{{(4( - 8) + 7(12) + 13 \times ( - 2))}}{{{4^2} + {7^2}}}$
On simplifying the above expression, we get:
$\dfrac{{x + 8}}{4} = \dfrac{{y - 12}}{7} = \dfrac{{65 \times - 2}}{{65}}$
$ \Rightarrow \dfrac{{x + 8}}{4} = - {\text{ and }}\dfrac{{y - 12}}{7} = - 2$
$ \Rightarrow $ x= -16 and y = -2.
Therefore, the new centre is ( -16,-2)
The radius is same as earlier i.e. r = 5cm
Therefore, the new equation of circle which is formed by taking the image of the given circle by the line 4x+7y+13=0 is given as:
$ \Rightarrow {(x + 16)^2} + {(y + 2)^2} = {5^2} = 25$
${x^2} + {y^2} + 32x + 4y + 235 = 0$
Hence, option D is the correct option.
Note:
In this type of question, you should know how to find the image of a point by a given line. The image of a point can also be found by assuming a point which lies on the given line and line joining the point and its image and then using the concept that point on the given line is mid point of given point and its image also the two lines are perpendicular.
Complete step by step answer:
The given equation of circle is ${x^2} + {y^2} + 16x - 24y + 183 = 0$ , we will convert this in standard form to find the centre of the circle.
The given circle equation can be written as:
${x^2} + 16x + 64 + {y^2} - 24y + 144 + - 25 = 0$
$ \Rightarrow {(x + 8)^2} + {(y - 12)^2} = 25 = {5^2}$ (1)
We know that the standard form of circle equation is given as:
$ \Rightarrow {(x - a)^2} + {(y - b)^2} = {r^2}$ (2)
Comparing equation 1 and 2, we have:
Centre: (-8 , 12) , radius = 5cm.
Image of the centre by line 4x+7y+13 =0 is given by:
$\dfrac{{x - ( - 8)}}{4} = \dfrac{{y - 12}}{7} = \dfrac{{(4( - 8) + 7(12) + 13 \times ( - 2))}}{{{4^2} + {7^2}}}$
On simplifying the above expression, we get:
$\dfrac{{x + 8}}{4} = \dfrac{{y - 12}}{7} = \dfrac{{65 \times - 2}}{{65}}$
$ \Rightarrow \dfrac{{x + 8}}{4} = - {\text{ and }}\dfrac{{y - 12}}{7} = - 2$
$ \Rightarrow $ x= -16 and y = -2.
Therefore, the new centre is ( -16,-2)
The radius is same as earlier i.e. r = 5cm
Therefore, the new equation of circle which is formed by taking the image of the given circle by the line 4x+7y+13=0 is given as:
$ \Rightarrow {(x + 16)^2} + {(y + 2)^2} = {5^2} = 25$
${x^2} + {y^2} + 32x + 4y + 235 = 0$
Hence, option D is the correct option.
Note:
In this type of question, you should know how to find the image of a point by a given line. The image of a point can also be found by assuming a point which lies on the given line and line joining the point and its image and then using the concept that point on the given line is mid point of given point and its image also the two lines are perpendicular.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

