Answer
Verified
392.4k+ views
Hint: In order to determine the required equation of a plane passing through the line intersection of the plane \[x + 2y + 3z = 2\] and \[x - y + z = 3\].First, we compare this equation with the two plane \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0,\lambda \in \mathbb{R}\] then we get the equation as \[ax + by + cz + d = 0\] with the points
.The distance between the line is \[2\sqrt 3 \]. Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. We use the formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]. We need to solve the question to get the required solution.
Complete step-by-step answer:
In this given problem,
We are given the line of intersection of planes \[x + 2y + 3z = 2\]and \[x - y + z = 3\] at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation as\[{P_1}:x + 2y + 3z = 2\]and \[{P_2}:x - y + z = 3\],
Let \[D\] be the distance,\[D = \dfrac{2}{{\sqrt 3 }}\]
For this we have to first determine the plane equation \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0\] as \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\] to simplify the this equation as the form \[ax + by + cz + d = 0\] with the point \[(x,y,z)\] as \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
Now, we have to simplify the equation \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\]
\[
(x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\
(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\
\]
Here, directly compare the equation\[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] with\[ax + by + cz + d = 0\]. Where, \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]
The formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]
We have the values \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]and the given distance \[D = \dfrac{2}{{\sqrt 3 }}\] By substitute all the values and points \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] into the equation to find out the value\[\lambda \]
\[ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}\].
Comparing the denominator\[{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2}\] with the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] by expanding the bracket on RHS, we get
\[
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;
\]
Take square on both sides of numerator and denominator, we get
\[
\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\
\Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}\]
By simplify in further step to solving the fraction on both sides, we get
\[
4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \;
\]
Combining all the terms together to find out the value,\[\lambda \], we get
\[
3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} \;
\]
Therefore, the value of \[\lambda = - \dfrac{7}{2}\]. Then
Let the equation \[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] on comparing with \[ax + by + cz + d = 0\] and substitute the \[\lambda = - \dfrac{7}{2}\] into plane equation.
\[
\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 \;
\]
Take LCM on the above equation, so we get
\[
\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 \;
\]
We perform multiplication on both sides by \[2\] to simplify the fraction, we can get
\[ - 5x + 11y - z + 17 = 0\]
Therefore, The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \]from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is \[ - 5x + 11y - z + 17 = 0\]
So, the final answer is option A: \[5x - 11y + z = 17\]
So, the correct answer is “Option A”.
Note: In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. This will help to find out the final equation by substituting the values into the formula.
.The distance between the line is \[2\sqrt 3 \]. Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. We use the formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]. We need to solve the question to get the required solution.
Complete step-by-step answer:
In this given problem,
We are given the line of intersection of planes \[x + 2y + 3z = 2\]and \[x - y + z = 3\] at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation as\[{P_1}:x + 2y + 3z = 2\]and \[{P_2}:x - y + z = 3\],
Let \[D\] be the distance,\[D = \dfrac{2}{{\sqrt 3 }}\]
For this we have to first determine the plane equation \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0\] as \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\] to simplify the this equation as the form \[ax + by + cz + d = 0\] with the point \[(x,y,z)\] as \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
Now, we have to simplify the equation \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\]
\[
(x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\
(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\
\]
Here, directly compare the equation\[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] with\[ax + by + cz + d = 0\]. Where, \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]
The formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]
We have the values \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]and the given distance \[D = \dfrac{2}{{\sqrt 3 }}\] By substitute all the values and points \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] into the equation to find out the value\[\lambda \]
\[ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}\].
Comparing the denominator\[{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2}\] with the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] by expanding the bracket on RHS, we get
\[
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;
\]
Take square on both sides of numerator and denominator, we get
\[
\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\
\Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}\]
By simplify in further step to solving the fraction on both sides, we get
\[
4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \;
\]
Combining all the terms together to find out the value,\[\lambda \], we get
\[
3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} \;
\]
Therefore, the value of \[\lambda = - \dfrac{7}{2}\]. Then
Let the equation \[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] on comparing with \[ax + by + cz + d = 0\] and substitute the \[\lambda = - \dfrac{7}{2}\] into plane equation.
\[
\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 \;
\]
Take LCM on the above equation, so we get
\[
\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 \;
\]
We perform multiplication on both sides by \[2\] to simplify the fraction, we can get
\[ - 5x + 11y - z + 17 = 0\]
Therefore, The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \]from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is \[ - 5x + 11y - z + 17 = 0\]
So, the final answer is option A: \[5x - 11y + z = 17\]
So, the correct answer is “Option A”.
Note: In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. This will help to find out the final equation by substituting the values into the formula.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE