The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is
A.\[5x - 11y + z = 17\]
B.\[\sqrt 2 x + y = 3\sqrt 2 - 1\]
C.\[x + y + z = \sqrt 3 \]
D.\[x - \sqrt 2 y = 1 - \sqrt 2 \]
Last updated date: 14th Mar 2023
•
Total views: 203.4k
•
Views today: 3.83k
Answer
203.4k+ views
Hint: In order to determine the required equation of a plane passing through the line intersection of the plane \[x + 2y + 3z = 2\] and \[x - y + z = 3\].First, we compare this equation with the two plane \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0,\lambda \in \mathbb{R}\] then we get the equation as \[ax + by + cz + d = 0\] with the points
.The distance between the line is \[2\sqrt 3 \]. Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. We use the formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]. We need to solve the question to get the required solution.
Complete step-by-step answer:
In this given problem,
We are given the line of intersection of planes \[x + 2y + 3z = 2\]and \[x - y + z = 3\] at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation as\[{P_1}:x + 2y + 3z = 2\]and \[{P_2}:x - y + z = 3\],
Let \[D\] be the distance,\[D = \dfrac{2}{{\sqrt 3 }}\]
For this we have to first determine the plane equation \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0\] as \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\] to simplify the this equation as the form \[ax + by + cz + d = 0\] with the point \[(x,y,z)\] as \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
Now, we have to simplify the equation \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\]
\[
(x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\
(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\
\]
Here, directly compare the equation\[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] with\[ax + by + cz + d = 0\]. Where, \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]
The formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]
We have the values \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]and the given distance \[D = \dfrac{2}{{\sqrt 3 }}\] By substitute all the values and points \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] into the equation to find out the value\[\lambda \]
\[ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}\].
Comparing the denominator\[{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2}\] with the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] by expanding the bracket on RHS, we get
\[
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;
\]
Take square on both sides of numerator and denominator, we get
\[
\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\
\Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}\]
By simplify in further step to solving the fraction on both sides, we get
\[
4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \;
\]
Combining all the terms together to find out the value,\[\lambda \], we get
\[
3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} \;
\]
Therefore, the value of \[\lambda = - \dfrac{7}{2}\]. Then
Let the equation \[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] on comparing with \[ax + by + cz + d = 0\] and substitute the \[\lambda = - \dfrac{7}{2}\] into plane equation.
\[
\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 \;
\]
Take LCM on the above equation, so we get
\[
\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 \;
\]
We perform multiplication on both sides by \[2\] to simplify the fraction, we can get
\[ - 5x + 11y - z + 17 = 0\]
Therefore, The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \]from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is \[ - 5x + 11y - z + 17 = 0\]
So, the final answer is option A: \[5x - 11y + z = 17\]
So, the correct answer is “Option A”.
Note: In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. This will help to find out the final equation by substituting the values into the formula.
.The distance between the line is \[2\sqrt 3 \]. Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. We use the formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]. We need to solve the question to get the required solution.
Complete step-by-step answer:
In this given problem,
We are given the line of intersection of planes \[x + 2y + 3z = 2\]and \[x - y + z = 3\] at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation as\[{P_1}:x + 2y + 3z = 2\]and \[{P_2}:x - y + z = 3\],
Let \[D\] be the distance,\[D = \dfrac{2}{{\sqrt 3 }}\]
For this we have to first determine the plane equation \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0\] as \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\] to simplify the this equation as the form \[ax + by + cz + d = 0\] with the point \[(x,y,z)\] as \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
Now, we have to simplify the equation \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\]
\[
(x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\
(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\
\]
Here, directly compare the equation\[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] with\[ax + by + cz + d = 0\]. Where, \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]
The formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]
We have the values \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]and the given distance \[D = \dfrac{2}{{\sqrt 3 }}\] By substitute all the values and points \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] into the equation to find out the value\[\lambda \]
\[ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}\].
Comparing the denominator\[{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2}\] with the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] by expanding the bracket on RHS, we get
\[
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;
\]
Take square on both sides of numerator and denominator, we get
\[
\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\
\Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}\]
By simplify in further step to solving the fraction on both sides, we get
\[
4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \;
\]
Combining all the terms together to find out the value,\[\lambda \], we get
\[
3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} \;
\]
Therefore, the value of \[\lambda = - \dfrac{7}{2}\]. Then
Let the equation \[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] on comparing with \[ax + by + cz + d = 0\] and substitute the \[\lambda = - \dfrac{7}{2}\] into plane equation.
\[
\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 \;
\]
Take LCM on the above equation, so we get
\[
\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 \;
\]
We perform multiplication on both sides by \[2\] to simplify the fraction, we can get
\[ - 5x + 11y - z + 17 = 0\]
Therefore, The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \]from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is \[ - 5x + 11y - z + 17 = 0\]
So, the final answer is option A: \[5x - 11y + z = 17\]
So, the correct answer is “Option A”.
Note: In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. This will help to find out the final equation by substituting the values into the formula.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
