
The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is
A.\[5x - 11y + z = 17\]
B.\[\sqrt 2 x + y = 3\sqrt 2 - 1\]
C.\[x + y + z = \sqrt 3 \]
D.\[x - \sqrt 2 y = 1 - \sqrt 2 \]
Answer
493.2k+ views
Hint: In order to determine the required equation of a plane passing through the line intersection of the plane \[x + 2y + 3z = 2\] and \[x - y + z = 3\].First, we compare this equation with the two plane \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0,\lambda \in \mathbb{R}\] then we get the equation as \[ax + by + cz + d = 0\] with the points
.The distance between the line is \[2\sqrt 3 \]. Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. We use the formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]. We need to solve the question to get the required solution.
Complete step-by-step answer:
In this given problem,
We are given the line of intersection of planes \[x + 2y + 3z = 2\]and \[x - y + z = 3\] at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation as\[{P_1}:x + 2y + 3z = 2\]and \[{P_2}:x - y + z = 3\],
Let \[D\] be the distance,\[D = \dfrac{2}{{\sqrt 3 }}\]
For this we have to first determine the plane equation \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0\] as \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\] to simplify the this equation as the form \[ax + by + cz + d = 0\] with the point \[(x,y,z)\] as \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
Now, we have to simplify the equation \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\]
\[
(x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\
(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\
\]
Here, directly compare the equation\[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] with\[ax + by + cz + d = 0\]. Where, \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]
The formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]
We have the values \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]and the given distance \[D = \dfrac{2}{{\sqrt 3 }}\] By substitute all the values and points \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] into the equation to find out the value\[\lambda \]
\[ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}\].
Comparing the denominator\[{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2}\] with the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] by expanding the bracket on RHS, we get
\[
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;
\]
Take square on both sides of numerator and denominator, we get
\[
\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\
\Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}\]
By simplify in further step to solving the fraction on both sides, we get
\[
4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \;
\]
Combining all the terms together to find out the value,\[\lambda \], we get
\[
3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} \;
\]
Therefore, the value of \[\lambda = - \dfrac{7}{2}\]. Then
Let the equation \[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] on comparing with \[ax + by + cz + d = 0\] and substitute the \[\lambda = - \dfrac{7}{2}\] into plane equation.
\[
\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 \;
\]
Take LCM on the above equation, so we get
\[
\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 \;
\]
We perform multiplication on both sides by \[2\] to simplify the fraction, we can get
\[ - 5x + 11y - z + 17 = 0\]
Therefore, The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \]from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is \[ - 5x + 11y - z + 17 = 0\]
So, the final answer is option A: \[5x - 11y + z = 17\]
So, the correct answer is “Option A”.
Note: In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. This will help to find out the final equation by substituting the values into the formula.
.The distance between the line is \[2\sqrt 3 \]. Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. We use the formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]. We need to solve the question to get the required solution.
Complete step-by-step answer:
In this given problem,
We are given the line of intersection of planes \[x + 2y + 3z = 2\]and \[x - y + z = 3\] at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation as\[{P_1}:x + 2y + 3z = 2\]and \[{P_2}:x - y + z = 3\],
Let \[D\] be the distance,\[D = \dfrac{2}{{\sqrt 3 }}\]
For this we have to first determine the plane equation \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0\] as \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\] to simplify the this equation as the form \[ax + by + cz + d = 0\] with the point \[(x,y,z)\] as \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
Now, we have to simplify the equation \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\]
\[
(x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\
(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\
\]
Here, directly compare the equation\[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] with\[ax + by + cz + d = 0\]. Where, \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]
The formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]
We have the values \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]and the given distance \[D = \dfrac{2}{{\sqrt 3 }}\] By substitute all the values and points \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] into the equation to find out the value\[\lambda \]
\[ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}\].
Comparing the denominator\[{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2}\] with the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] by expanding the bracket on RHS, we get
\[
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;
\]
Take square on both sides of numerator and denominator, we get
\[
\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\
\Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}\]
By simplify in further step to solving the fraction on both sides, we get
\[
4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \;
\]
Combining all the terms together to find out the value,\[\lambda \], we get
\[
3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} \;
\]
Therefore, the value of \[\lambda = - \dfrac{7}{2}\]. Then
Let the equation \[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] on comparing with \[ax + by + cz + d = 0\] and substitute the \[\lambda = - \dfrac{7}{2}\] into plane equation.
\[
\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 \;
\]
Take LCM on the above equation, so we get
\[
\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 \;
\]
We perform multiplication on both sides by \[2\] to simplify the fraction, we can get
\[ - 5x + 11y - z + 17 = 0\]
Therefore, The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \]from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is \[ - 5x + 11y - z + 17 = 0\]
So, the final answer is option A: \[5x - 11y + z = 17\]
So, the correct answer is “Option A”.
Note: In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. This will help to find out the final equation by substituting the values into the formula.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

Correct the following 1m1000cm class 11 physics CBSE

