
The equation of a line through the intersection of lines $x=0$ and $y=0$ and through the
point $\left( 2,~2 \right)$ is
(a) $y=x-1$
(a) $y=-x$
(b) $y=x$
(c) $y=-x+2$
Answer
623.7k+ views
Hint: Substitute the given points into the standard equation of line formula.
The equations of the given lines are $x=0$ and $y=0$. The coordinates of the point of
intersections are already available. This means that the point of intersection of these lines would be
$\left( 0,0 \right)$. Another point through which the required line passes through is given in the
question as $\left( 2,2 \right)$.
Now, we know that the equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and
\[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the required line passing through $\left( 0,0 \right)$ and $\left( 2,2 \right)$ can
be obtained as,
$y-0=\dfrac{2-0}{2-0}\left( x-0 \right)$
Therefore, the equation of the required line is $y=x$.
Hence, we get option (c) as the correct answer.
Note: The equations $x=0$ and $y=0$ indicate that the required line passes through the origin. So,
the formula to find the equation of the line passing through a point $\left( {{x}_{1}},{{y}_{1}} \right)$
can be obtained as $y=mx$, where $m=\dfrac{{{y}_{1}}}{{{x}_{1}}}$ is the slope.
The equations of the given lines are $x=0$ and $y=0$. The coordinates of the point of
intersections are already available. This means that the point of intersection of these lines would be
$\left( 0,0 \right)$. Another point through which the required line passes through is given in the
question as $\left( 2,2 \right)$.
Now, we know that the equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and
\[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the required line passing through $\left( 0,0 \right)$ and $\left( 2,2 \right)$ can
be obtained as,
$y-0=\dfrac{2-0}{2-0}\left( x-0 \right)$
Therefore, the equation of the required line is $y=x$.
Hence, we get option (c) as the correct answer.
Note: The equations $x=0$ and $y=0$ indicate that the required line passes through the origin. So,
the formula to find the equation of the line passing through a point $\left( {{x}_{1}},{{y}_{1}} \right)$
can be obtained as $y=mx$, where $m=\dfrac{{{y}_{1}}}{{{x}_{1}}}$ is the slope.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

