
The equation of a line through the intersection of lines $x=0$ and $y=0$ and through the
point $\left( 2,~2 \right)$ is
(a) $y=x-1$
(a) $y=-x$
(b) $y=x$
(c) $y=-x+2$
Answer
617.4k+ views
Hint: Substitute the given points into the standard equation of line formula.
The equations of the given lines are $x=0$ and $y=0$. The coordinates of the point of
intersections are already available. This means that the point of intersection of these lines would be
$\left( 0,0 \right)$. Another point through which the required line passes through is given in the
question as $\left( 2,2 \right)$.
Now, we know that the equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and
\[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the required line passing through $\left( 0,0 \right)$ and $\left( 2,2 \right)$ can
be obtained as,
$y-0=\dfrac{2-0}{2-0}\left( x-0 \right)$
Therefore, the equation of the required line is $y=x$.
Hence, we get option (c) as the correct answer.
Note: The equations $x=0$ and $y=0$ indicate that the required line passes through the origin. So,
the formula to find the equation of the line passing through a point $\left( {{x}_{1}},{{y}_{1}} \right)$
can be obtained as $y=mx$, where $m=\dfrac{{{y}_{1}}}{{{x}_{1}}}$ is the slope.
The equations of the given lines are $x=0$ and $y=0$. The coordinates of the point of
intersections are already available. This means that the point of intersection of these lines would be
$\left( 0,0 \right)$. Another point through which the required line passes through is given in the
question as $\left( 2,2 \right)$.
Now, we know that the equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and
\[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the required line passing through $\left( 0,0 \right)$ and $\left( 2,2 \right)$ can
be obtained as,
$y-0=\dfrac{2-0}{2-0}\left( x-0 \right)$
Therefore, the equation of the required line is $y=x$.
Hence, we get option (c) as the correct answer.
Note: The equations $x=0$ and $y=0$ indicate that the required line passes through the origin. So,
the formula to find the equation of the line passing through a point $\left( {{x}_{1}},{{y}_{1}} \right)$
can be obtained as $y=mx$, where $m=\dfrac{{{y}_{1}}}{{{x}_{1}}}$ is the slope.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

