The entropy change when 1 mole of ideal gas at 27$^o$C is expanded reversibly from 2 litre to 20 litre is
(A) $ 2cal{K^{ - 1}}mo{l^{ - 1}} $
(B) $ 4.6cal{K^{ - 1}}mo{l^{ - 1}} $
(C) $ 4J{K^{ - 1}}mo{l^{ - 1}} $
(D) $ 4.6kJ{K^{ - 1}}mo{l^{ - 1}} $
Answer
Verified
400.8k+ views
Hint :Entropy of the system is defined as the randomness or degree of freedom of any system. Entropy is denoted by ‘S’. Entropy is a thermodynamic quantity which depends on thermodynamic variables that are temperature, pressure and volume. We cannot calculate the absolute value of entropy for any system but we can calculate the change in entropy
( $ \Delta S $ ).
Complete Step By Step Answer:
Thermodynamically change in entropy is represented as
$ \Delta S = \dfrac{{{q_{reversible}}}}{T} $ . This is the formula to calculate change in entropy.
Where,
$ {q_{reversible}} $ = heat exchange for the system which is reversible in nature (Joule or calorie).
$ T $ = temperature(K).
The unit of entropy is $ J{K^{ - 1}} $ or $ Cal{K^{ - 1}} $ .
$ 1J{K^{ - 1}} $ is said to be 1 entropy unit.
Given: $ \Delta S $ =?
n=1mol
T= $ {27^0}C $ = $ 27 + 273 = 300K $ .
$ {V_1} = 2L $
$ {V_2} = 20L $
Let’s consider $ R = 2calmo{l^{ - 1}}{K^{ - 1}} $
Let’s rewrite the equation,
$ \Delta S = \dfrac{{{q_{reversible}}}}{T} $
Substituting q by $ \Delta U + P\Delta V $ ,
$ \Delta S = \dfrac{{\Delta U + P\Delta V}}{T} $
For an ideal gas $ \Delta T = 0,\Delta U = 0 $ .
So, we get
$ \Delta S = \dfrac{{P\Delta V}}{T} $
From the ideal gas equation we know that $ P = \dfrac{{nrT}}{V} $
$ \Delta S = \dfrac{{nRT}}{{V \times T}} \times \Delta V $
$ \Delta S = nR\dfrac{{\Delta V}}{V} $
On integration we have,
$ \Delta S = nR\ln \dfrac{{{V_2}}}{{{V_1}}} $ .
Substituting the given values we have,
$ \Rightarrow \Delta S = 1 \times 2 \times \ln \dfrac{{20}}{2} $
$ \Delta S = 2 \times 2.303 $
$ \Delta S = 4.606cal{K^{ - 1}}mo{l^{ - 1}} $ .
So, the correct option is (B).
Note :
For any reversible system there is one and only path. So we can say that $ {q_{reversible}} $ is a state function. Change in entropy is inversely proportional to temperature that is at low
( $ \Delta S $ ).
Complete Step By Step Answer:
Thermodynamically change in entropy is represented as
$ \Delta S = \dfrac{{{q_{reversible}}}}{T} $ . This is the formula to calculate change in entropy.
Where,
$ {q_{reversible}} $ = heat exchange for the system which is reversible in nature (Joule or calorie).
$ T $ = temperature(K).
The unit of entropy is $ J{K^{ - 1}} $ or $ Cal{K^{ - 1}} $ .
$ 1J{K^{ - 1}} $ is said to be 1 entropy unit.
Given: $ \Delta S $ =?
n=1mol
T= $ {27^0}C $ = $ 27 + 273 = 300K $ .
$ {V_1} = 2L $
$ {V_2} = 20L $
Let’s consider $ R = 2calmo{l^{ - 1}}{K^{ - 1}} $
Let’s rewrite the equation,
$ \Delta S = \dfrac{{{q_{reversible}}}}{T} $
Substituting q by $ \Delta U + P\Delta V $ ,
$ \Delta S = \dfrac{{\Delta U + P\Delta V}}{T} $
For an ideal gas $ \Delta T = 0,\Delta U = 0 $ .
So, we get
$ \Delta S = \dfrac{{P\Delta V}}{T} $
From the ideal gas equation we know that $ P = \dfrac{{nrT}}{V} $
$ \Delta S = \dfrac{{nRT}}{{V \times T}} \times \Delta V $
$ \Delta S = nR\dfrac{{\Delta V}}{V} $
On integration we have,
$ \Delta S = nR\ln \dfrac{{{V_2}}}{{{V_1}}} $ .
Substituting the given values we have,
$ \Rightarrow \Delta S = 1 \times 2 \times \ln \dfrac{{20}}{2} $
$ \Delta S = 2 \times 2.303 $
$ \Delta S = 4.606cal{K^{ - 1}}mo{l^{ - 1}} $ .
So, the correct option is (B).
Note :
For any reversible system there is one and only path. So we can say that $ {q_{reversible}} $ is a state function. Change in entropy is inversely proportional to temperature that is at low
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE