
The entropy change associated with the conversion of 1 kg of ice at 273 K to water vapours at 383 K is :
[Given that : Specific heat of water liquid and water vapour are 4.2 $kJ{K^{ - 1}}k{g^{ - 1}}$and 2.0$kJ{K^{ - 1}}k{g^{ - 1}}$; latent heat of fusion and vaporisation of water are 344$kJk{g^{ - 1}}$and 2491$kJk{g^{ - 1}}$, respectively].
[Take : log 273 = 2.436, log 373 = 2.572, log 383 = 2.583]
a.) 7.90$kJ{K^{ - 1}}k{g^{ - 1}}$
b.) 2.64$kJ{K^{ - 1}}k{g^{ - 1}}$
c.) 8.49$kJ{K^{ - 1}}k{g^{ - 1}}$
d.) 9.26$kJ{K^{ - 1}}k{g^{ - 1}}$
Answer
552k+ views
Hint: Entropy can be defined as the disorder in a system. When a substance changes its state, its entropy also changes. The gases have highest entropy while the solids possess lowest entropy. The entropy change in a system can be calculated from the two formulas given as-
$\Delta S$= $\dfrac{{\Delta {H_{Transition}}}}{T}$
$\Delta S$= $ms\ln \dfrac{{{T_f}}}{{{T_i}}}$
Where $\Delta S$ is the entropy change
‘n’ is the number of moles
C is the molar heat capacity
${T_f}$is final temperature
${T_i}$is initial temperature
‘m’ is the mass
‘s’ is the specific heat capacity.
Complete step by step answer :
Let us start by writing what is given to us and what we need to find.
Thus, Given :
Mass of ice = 1 kg
Initial temperature = 273 K
Final temperature = 383 K
Further, we have been given that Specific heat of water liquid = 4.2 $kJ{K^{ - 1}}k{g^{ - 1}}$
Specific heat of water vapour = 2.0$kJ{K^{ - 1}}k{g^{ - 1}}$
Latent heat of fusion of water = 344$kJk{g^{ - 1}}$
Latent heat of vaporisation of water = 2491$kJk{g^{ - 1}}$
To find :
Entropy change
We have the formula for entropy change is as -
$\Delta S$= $\dfrac{{\Delta {H_{Transition}}}}{T}$
$\Delta S$= $nC\ln \dfrac{{{T_f}}}{{{T_i}}}$
$\Delta S$= $ms\ln \dfrac{{{T_f}}}{{{T_i}}}$
Where $\Delta S$ is the entropy change
‘n’ is the number of moles
C is the molar heat capacity
${T_f}$is final temperature
${T_i}$is initial temperature
‘m’ is the mass
‘s’ is the specific heat capacity.
We are converting the solid ice into water vapour which is a gas. The phase change for this can be as -
${H_2}O(s)\xrightarrow{{\Delta {S_1}}}{H_2}O(l)\xrightarrow{{\Delta {S_2}}}{H_2}O(l)\xrightarrow{{\Delta {S_3}}}{H_2}O(g)\xrightarrow{{\Delta {S_4}}}{H_2}O(g)$
$\Delta {S_1}$= $\dfrac{{\Delta {H_{FUSION}}}}{T}$
$\Delta {S_1}$= $\dfrac{{334}}{{273}}$
$\Delta {S_1}$= 1.22
$\Delta {S_2}$= $ms\ln \dfrac{{{T_f}}}{{{T_i}}}$
$\Delta {S_2}$= $4.2\ln \dfrac{{383}}{{273}}$
$\Delta {S_2}$= 1.31
$\Delta {S_3}$= $\dfrac{{\Delta {H_{vaporisation}}}}{T}$
$\Delta {S_3}$= $\dfrac{{2491}}{{373}}$
$\Delta {S_3}$= 6.67
$\Delta {S_4}$= $ms\ln \dfrac{{{T_f}}}{{{T_i}}}$
$\Delta {S_4}$= $2.0\ln \dfrac{{383}}{{273}}$
$\Delta {S_4}$= 0.05
$\Delta {S_{TOTAL}}$=$\Delta {S_1}$+$\Delta {S_2}$+$\Delta {S_3}$+$\Delta {S_4}$
$\Delta {S_{TOTAL}}$= 1.22 + 1.31 + 6.67 + 0.05
$\Delta {S_{TOTAL}}$= 9.25 $kJ{K^{ - 1}}k{g^{ - 1}}$
This value is similar to in option d.).
So, the correct answer is option d.).
Note: The gases have least intermolecular forces. So, the molecules are not bonded to each other and thus are in random motion. So, the gases have highest entropy while solids have lowest entropy. When we are observing the phase transitions, firstly, the solid will convert to liquid and then there will be a rise in temperature of liquid by heating and when the sufficient temperature has reached then it will convert into gas. After this, there will be a temperature increase in gas.
$\Delta S$= $\dfrac{{\Delta {H_{Transition}}}}{T}$
$\Delta S$= $ms\ln \dfrac{{{T_f}}}{{{T_i}}}$
Where $\Delta S$ is the entropy change
‘n’ is the number of moles
C is the molar heat capacity
${T_f}$is final temperature
${T_i}$is initial temperature
‘m’ is the mass
‘s’ is the specific heat capacity.
Complete step by step answer :
Let us start by writing what is given to us and what we need to find.
Thus, Given :
Mass of ice = 1 kg
Initial temperature = 273 K
Final temperature = 383 K
Further, we have been given that Specific heat of water liquid = 4.2 $kJ{K^{ - 1}}k{g^{ - 1}}$
Specific heat of water vapour = 2.0$kJ{K^{ - 1}}k{g^{ - 1}}$
Latent heat of fusion of water = 344$kJk{g^{ - 1}}$
Latent heat of vaporisation of water = 2491$kJk{g^{ - 1}}$
To find :
Entropy change
We have the formula for entropy change is as -
$\Delta S$= $\dfrac{{\Delta {H_{Transition}}}}{T}$
$\Delta S$= $nC\ln \dfrac{{{T_f}}}{{{T_i}}}$
$\Delta S$= $ms\ln \dfrac{{{T_f}}}{{{T_i}}}$
Where $\Delta S$ is the entropy change
‘n’ is the number of moles
C is the molar heat capacity
${T_f}$is final temperature
${T_i}$is initial temperature
‘m’ is the mass
‘s’ is the specific heat capacity.
We are converting the solid ice into water vapour which is a gas. The phase change for this can be as -
${H_2}O(s)\xrightarrow{{\Delta {S_1}}}{H_2}O(l)\xrightarrow{{\Delta {S_2}}}{H_2}O(l)\xrightarrow{{\Delta {S_3}}}{H_2}O(g)\xrightarrow{{\Delta {S_4}}}{H_2}O(g)$
$\Delta {S_1}$= $\dfrac{{\Delta {H_{FUSION}}}}{T}$
$\Delta {S_1}$= $\dfrac{{334}}{{273}}$
$\Delta {S_1}$= 1.22
$\Delta {S_2}$= $ms\ln \dfrac{{{T_f}}}{{{T_i}}}$
$\Delta {S_2}$= $4.2\ln \dfrac{{383}}{{273}}$
$\Delta {S_2}$= 1.31
$\Delta {S_3}$= $\dfrac{{\Delta {H_{vaporisation}}}}{T}$
$\Delta {S_3}$= $\dfrac{{2491}}{{373}}$
$\Delta {S_3}$= 6.67
$\Delta {S_4}$= $ms\ln \dfrac{{{T_f}}}{{{T_i}}}$
$\Delta {S_4}$= $2.0\ln \dfrac{{383}}{{273}}$
$\Delta {S_4}$= 0.05
$\Delta {S_{TOTAL}}$=$\Delta {S_1}$+$\Delta {S_2}$+$\Delta {S_3}$+$\Delta {S_4}$
$\Delta {S_{TOTAL}}$= 1.22 + 1.31 + 6.67 + 0.05
$\Delta {S_{TOTAL}}$= 9.25 $kJ{K^{ - 1}}k{g^{ - 1}}$
This value is similar to in option d.).
So, the correct answer is option d.).
Note: The gases have least intermolecular forces. So, the molecules are not bonded to each other and thus are in random motion. So, the gases have highest entropy while solids have lowest entropy. When we are observing the phase transitions, firstly, the solid will convert to liquid and then there will be a rise in temperature of liquid by heating and when the sufficient temperature has reached then it will convert into gas. After this, there will be a temperature increase in gas.
Recently Updated Pages
Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

