![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The electron configuration for chromium is $\left[ Ar \right]4{{s}^{1}}\text{ }3{{d}^{5}}$. Select the best explanation for this irregular electron configuration.
A. A half-filled d orbital is slightly lower in energy than the 4s, thus filling first.
B. The 4s orbital is at a lower energy than the 3d orbital, thus filling first.
C. Chromium is a transition metal and its electrons are loosely held.
D. d orbitals are dominant and shield electrons from orbitals close in energy.
Answer
477.3k+ views
Hint: According to Hund’s principle which states that, when electron starts filling up subshells, they do it such that the electrons of the same spin must solely occupy the orbitals within the subshell first and then the electrons of opposite spin will start filling up the remaining space in the orbitals.
Complete answer:
We know that the order of stability is defined as:
Fully-filled orbital $>$ half-filled orbital $>$ partially-filled orbital
We also know that s-orbital can accommodate a maximum of 2 electrons, p-orbital can accommodate a maximum of 6 electrons, d-orbital can accommodate a maximum of 10 electrons and f-orbital can accommodate a maximum of 14 electrons.
So, in $4{{s}^{1}}\text{ }3{{d}^{5}}$we see that both the s and p orbitals are half-filled. In case of chromium, the expected electronic configuration is $4{{s}^{2}}\text{ }3{{d}^{4}}$, yet actually we see that one electron from 4s gets transferred to 3d orbital making it $4{{s}^{1}}\text{ }3{{d}^{5}}$. This happens because $4{{s}^{1}}\text{ }3{{d}^{5}}$ being a more stable configuration.
Electron orbitals are most stable when fully-filled or half-filled, hence the most stable configuration of electrons for 3d subshells is either $3{{d}^{10}}$or $3{{d}^{5}}$. In the case of chromium, after $4{{s}^{2}}\text{ }3{{d}^{4}}$ configuration is attained, and electron from s-orbital gets transferred to 3d subshell because $3{{d}^{5}}$ is much more stable configuration than $3{{d}^{4}}$. This is why the configuration for chromium is $4{{s}^{1}}\text{ }3{{d}^{5}}$.
So, the correct answer is “Option A”.
Note: In the case of chromium, it is an exception of the Aufbau principle and the systematic rule of the principle does not comply with its electron configuration. The classical rule that there are orbitals with different energy levels state that
$1s\text{ }<\text{ }2s\text{ }<\text{ }2p\text{ }<\text{ }3s\text{ }<\text{ }3p\text{ }<\text{ }4s\text{ }<\text{ }3d\text{ }<\text{ }4p$ and so on. Same results are seen in $Cu$ where the expected configuration is $[Ar]4{{s}^{2}}3{{d}^{9}}$ but the observed configuration is $[Ar]4{{s}^{1}}3{{d}^{10}}$
Complete answer:
We know that the order of stability is defined as:
Fully-filled orbital $>$ half-filled orbital $>$ partially-filled orbital
We also know that s-orbital can accommodate a maximum of 2 electrons, p-orbital can accommodate a maximum of 6 electrons, d-orbital can accommodate a maximum of 10 electrons and f-orbital can accommodate a maximum of 14 electrons.
So, in $4{{s}^{1}}\text{ }3{{d}^{5}}$we see that both the s and p orbitals are half-filled. In case of chromium, the expected electronic configuration is $4{{s}^{2}}\text{ }3{{d}^{4}}$, yet actually we see that one electron from 4s gets transferred to 3d orbital making it $4{{s}^{1}}\text{ }3{{d}^{5}}$. This happens because $4{{s}^{1}}\text{ }3{{d}^{5}}$ being a more stable configuration.
![seo images](https://www.vedantu.com/question-sets/17f572ba-35f0-4b6a-8119-979cdd44c2722797076504277655382.png)
Electron orbitals are most stable when fully-filled or half-filled, hence the most stable configuration of electrons for 3d subshells is either $3{{d}^{10}}$or $3{{d}^{5}}$. In the case of chromium, after $4{{s}^{2}}\text{ }3{{d}^{4}}$ configuration is attained, and electron from s-orbital gets transferred to 3d subshell because $3{{d}^{5}}$ is much more stable configuration than $3{{d}^{4}}$. This is why the configuration for chromium is $4{{s}^{1}}\text{ }3{{d}^{5}}$.
So, the correct answer is “Option A”.
Note: In the case of chromium, it is an exception of the Aufbau principle and the systematic rule of the principle does not comply with its electron configuration. The classical rule that there are orbitals with different energy levels state that
$1s\text{ }<\text{ }2s\text{ }<\text{ }2p\text{ }<\text{ }3s\text{ }<\text{ }3p\text{ }<\text{ }4s\text{ }<\text{ }3d\text{ }<\text{ }4p$ and so on. Same results are seen in $Cu$ where the expected configuration is $[Ar]4{{s}^{2}}3{{d}^{9}}$ but the observed configuration is $[Ar]4{{s}^{1}}3{{d}^{10}}$
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 Question and Answer - Your Ultimate Solutions Guide
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Identify how many lines of symmetry drawn are there class 8 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State true or false If two lines intersect and if one class 8 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which sentence is punctuated correctly A Always ask class 8 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What problem did Carter face when he reached the mummy class 11 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)