
The domain of the function $y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6} $ is $\left[ {p,\dfrac{{q\pi }}{4}} \right] \cup \left[ {\dfrac{{r\pi }}{4},s} \right]$, then the value of p + q + r + s is
Answer
596.1k+ views
Hint – In this question first use the concept that the domain of square root is greater than equal to 0, thus $\sin x + \cos x \geqslant 0$ and $7x - {x^2} - 6 \geqslant 0$. For the terms involving trigonometric ratios convert them into the form $\sin \left( {A + B} \right)$ by multiplying and dividing $\sin x + \cos x \geqslant 0$ by $\sqrt 2 $ . Solving the inequality will help to get the answer.
Complete step-by-step solution -
Given equation
$y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6} $
Now to find out the domain the function which is in square root is always greater than or equal to zero.
$ \Rightarrow \sin x + \cos x \geqslant 0$ ............. (1) and $7x - {x^2} - 6 \geqslant 0$........................... (2)
Now first solve first equation we have,
$ \Rightarrow \sin x + \cos x \geqslant 0$
Now multiply and divide by $\sqrt 2 $ we have,
$ \Rightarrow \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} \times \sin x + \dfrac{1}{{\sqrt 2 }} \times \cos x} \right) \geqslant 0$
Now as we know that $\sin {45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \sqrt 2 \left( {\cos 45 \times \sin x + \sin 45 \times \cos x} \right) \geqslant 0$
$ \Rightarrow \left( {\cos {{45}^0} \times \sin x + \sin {{45}^0} \times \cos x} \right) \geqslant 0$
Now as we know that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ so use this property in above equation we have,
$ \Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) \geqslant 0,{\text{ }}\left[ {\because {{45}^0} = \dfrac{\pi }{4}} \right]$
Now as we know $\sin x \geqslant 0,{\text{ }}x \in \left[ {0,\pi } \right],\left[ {2\pi ,3\pi } \right],....$
$ \Rightarrow 0 \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant \pi $ and $2\pi \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant 3\pi $ .................
$ \Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \pi - \dfrac{\pi }{4}$ and $2\pi - \dfrac{\pi }{4} \leqslant x \leqslant 3\pi - \dfrac{\pi }{4}$ .................
$ \Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \dfrac{{3\pi }}{4}$ and $\dfrac{{7\pi }}{4} \leqslant x \leqslant \dfrac{{11\pi }}{4}$
$ \Rightarrow x \in \left[ { - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}} \right],\left[ {\dfrac{{7\pi }}{4},\dfrac{{11\pi }}{4}} \right]$................. (3)
Now consider equation (2) we have,
$ \Rightarrow 7x - {x^2} - 6 \geqslant 0$
Now multiply by (-1) so the inequality sign reversed so we have,
$ \Rightarrow - 7x + {x^2} + 6 \leqslant 0$
$ \Rightarrow {x^2} - 7x + 6 \leqslant 0$
Now factorize this equation we have,
$ \Rightarrow {x^2} - x - 6x + 6 \leqslant 0$
$ \Rightarrow x\left( {x - 1} \right) - 6\left( {x - 1} \right) \leqslant 0$
$ \Rightarrow \left( {x - 1} \right)\left( {x - 6} \right) \leqslant 0$
$ \Rightarrow x \in \left[ {1,6} \right]$............................. (4)
So the domain of the given equation is the intersection region of equation (3) and (4).
Now $\dfrac{{ - \pi }}{4} < 1$, $\dfrac{{3\pi }}{4} > 1$, $\dfrac{{7\pi }}{4} < 6$, $\dfrac{{11\pi }}{4} > 6$
Now the common region is shown in the above diagram so the domain of the given function is
$ \Rightarrow \left[ {1,\dfrac{{3\pi }}{4}} \right] \cup \left[ {\dfrac{{7\pi }}{4},6} \right]$
So on comparing with $\left[ {p,\dfrac{{q\pi }}{4}} \right] \cup \left[ {\dfrac{{r\pi }}{4},s} \right]$
$ \Rightarrow p = 1,q = 3,r = 7,s = 6$
So the value of p + q + r + s is
$ \Rightarrow p + q + r + s = 1 + 3 + 7 + 6 = 17$
So this is the required answer.
Note – The domain of a function corresponds to the possible values of the independent variable that is x in this case, for which the entire function is defined. For example the domain of a quadratic function like $a{x^2} + bx + c = 0$ is $x \in R$ as this quadratic is defined for any value of x belonging to real axis from$ - \infty {\text{ to }} + \infty $.
Complete step-by-step solution -
Given equation
$y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6} $
Now to find out the domain the function which is in square root is always greater than or equal to zero.
$ \Rightarrow \sin x + \cos x \geqslant 0$ ............. (1) and $7x - {x^2} - 6 \geqslant 0$........................... (2)
Now first solve first equation we have,
$ \Rightarrow \sin x + \cos x \geqslant 0$
Now multiply and divide by $\sqrt 2 $ we have,
$ \Rightarrow \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} \times \sin x + \dfrac{1}{{\sqrt 2 }} \times \cos x} \right) \geqslant 0$
Now as we know that $\sin {45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \sqrt 2 \left( {\cos 45 \times \sin x + \sin 45 \times \cos x} \right) \geqslant 0$
$ \Rightarrow \left( {\cos {{45}^0} \times \sin x + \sin {{45}^0} \times \cos x} \right) \geqslant 0$
Now as we know that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ so use this property in above equation we have,
$ \Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) \geqslant 0,{\text{ }}\left[ {\because {{45}^0} = \dfrac{\pi }{4}} \right]$
Now as we know $\sin x \geqslant 0,{\text{ }}x \in \left[ {0,\pi } \right],\left[ {2\pi ,3\pi } \right],....$
$ \Rightarrow 0 \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant \pi $ and $2\pi \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant 3\pi $ .................
$ \Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \pi - \dfrac{\pi }{4}$ and $2\pi - \dfrac{\pi }{4} \leqslant x \leqslant 3\pi - \dfrac{\pi }{4}$ .................
$ \Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \dfrac{{3\pi }}{4}$ and $\dfrac{{7\pi }}{4} \leqslant x \leqslant \dfrac{{11\pi }}{4}$
$ \Rightarrow x \in \left[ { - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}} \right],\left[ {\dfrac{{7\pi }}{4},\dfrac{{11\pi }}{4}} \right]$................. (3)
Now consider equation (2) we have,
$ \Rightarrow 7x - {x^2} - 6 \geqslant 0$
Now multiply by (-1) so the inequality sign reversed so we have,
$ \Rightarrow - 7x + {x^2} + 6 \leqslant 0$
$ \Rightarrow {x^2} - 7x + 6 \leqslant 0$
Now factorize this equation we have,
$ \Rightarrow {x^2} - x - 6x + 6 \leqslant 0$
$ \Rightarrow x\left( {x - 1} \right) - 6\left( {x - 1} \right) \leqslant 0$
$ \Rightarrow \left( {x - 1} \right)\left( {x - 6} \right) \leqslant 0$
$ \Rightarrow x \in \left[ {1,6} \right]$............................. (4)
So the domain of the given equation is the intersection region of equation (3) and (4).
Now $\dfrac{{ - \pi }}{4} < 1$, $\dfrac{{3\pi }}{4} > 1$, $\dfrac{{7\pi }}{4} < 6$, $\dfrac{{11\pi }}{4} > 6$
Now the common region is shown in the above diagram so the domain of the given function is
$ \Rightarrow \left[ {1,\dfrac{{3\pi }}{4}} \right] \cup \left[ {\dfrac{{7\pi }}{4},6} \right]$
So on comparing with $\left[ {p,\dfrac{{q\pi }}{4}} \right] \cup \left[ {\dfrac{{r\pi }}{4},s} \right]$
$ \Rightarrow p = 1,q = 3,r = 7,s = 6$
So the value of p + q + r + s is
$ \Rightarrow p + q + r + s = 1 + 3 + 7 + 6 = 17$
So this is the required answer.
Note – The domain of a function corresponds to the possible values of the independent variable that is x in this case, for which the entire function is defined. For example the domain of a quadratic function like $a{x^2} + bx + c = 0$ is $x \in R$ as this quadratic is defined for any value of x belonging to real axis from$ - \infty {\text{ to }} + \infty $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

