
The domain of the function $y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6} $ is $\left[ {p,\dfrac{{q\pi }}{4}} \right] \cup \left[ {\dfrac{{r\pi }}{4},s} \right]$, then the value of p + q + r + s is
Answer
611.1k+ views
Hint – In this question first use the concept that the domain of square root is greater than equal to 0, thus $\sin x + \cos x \geqslant 0$ and $7x - {x^2} - 6 \geqslant 0$. For the terms involving trigonometric ratios convert them into the form $\sin \left( {A + B} \right)$ by multiplying and dividing $\sin x + \cos x \geqslant 0$ by $\sqrt 2 $ . Solving the inequality will help to get the answer.
Complete step-by-step solution -
Given equation
$y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6} $
Now to find out the domain the function which is in square root is always greater than or equal to zero.
$ \Rightarrow \sin x + \cos x \geqslant 0$ ............. (1) and $7x - {x^2} - 6 \geqslant 0$........................... (2)
Now first solve first equation we have,
$ \Rightarrow \sin x + \cos x \geqslant 0$
Now multiply and divide by $\sqrt 2 $ we have,
$ \Rightarrow \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} \times \sin x + \dfrac{1}{{\sqrt 2 }} \times \cos x} \right) \geqslant 0$
Now as we know that $\sin {45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \sqrt 2 \left( {\cos 45 \times \sin x + \sin 45 \times \cos x} \right) \geqslant 0$
$ \Rightarrow \left( {\cos {{45}^0} \times \sin x + \sin {{45}^0} \times \cos x} \right) \geqslant 0$
Now as we know that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ so use this property in above equation we have,
$ \Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) \geqslant 0,{\text{ }}\left[ {\because {{45}^0} = \dfrac{\pi }{4}} \right]$
Now as we know $\sin x \geqslant 0,{\text{ }}x \in \left[ {0,\pi } \right],\left[ {2\pi ,3\pi } \right],....$
$ \Rightarrow 0 \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant \pi $ and $2\pi \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant 3\pi $ .................
$ \Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \pi - \dfrac{\pi }{4}$ and $2\pi - \dfrac{\pi }{4} \leqslant x \leqslant 3\pi - \dfrac{\pi }{4}$ .................
$ \Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \dfrac{{3\pi }}{4}$ and $\dfrac{{7\pi }}{4} \leqslant x \leqslant \dfrac{{11\pi }}{4}$
$ \Rightarrow x \in \left[ { - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}} \right],\left[ {\dfrac{{7\pi }}{4},\dfrac{{11\pi }}{4}} \right]$................. (3)
Now consider equation (2) we have,
$ \Rightarrow 7x - {x^2} - 6 \geqslant 0$
Now multiply by (-1) so the inequality sign reversed so we have,
$ \Rightarrow - 7x + {x^2} + 6 \leqslant 0$
$ \Rightarrow {x^2} - 7x + 6 \leqslant 0$
Now factorize this equation we have,
$ \Rightarrow {x^2} - x - 6x + 6 \leqslant 0$
$ \Rightarrow x\left( {x - 1} \right) - 6\left( {x - 1} \right) \leqslant 0$
$ \Rightarrow \left( {x - 1} \right)\left( {x - 6} \right) \leqslant 0$
$ \Rightarrow x \in \left[ {1,6} \right]$............................. (4)
So the domain of the given equation is the intersection region of equation (3) and (4).
Now $\dfrac{{ - \pi }}{4} < 1$, $\dfrac{{3\pi }}{4} > 1$, $\dfrac{{7\pi }}{4} < 6$, $\dfrac{{11\pi }}{4} > 6$
Now the common region is shown in the above diagram so the domain of the given function is
$ \Rightarrow \left[ {1,\dfrac{{3\pi }}{4}} \right] \cup \left[ {\dfrac{{7\pi }}{4},6} \right]$
So on comparing with $\left[ {p,\dfrac{{q\pi }}{4}} \right] \cup \left[ {\dfrac{{r\pi }}{4},s} \right]$
$ \Rightarrow p = 1,q = 3,r = 7,s = 6$
So the value of p + q + r + s is
$ \Rightarrow p + q + r + s = 1 + 3 + 7 + 6 = 17$
So this is the required answer.
Note – The domain of a function corresponds to the possible values of the independent variable that is x in this case, for which the entire function is defined. For example the domain of a quadratic function like $a{x^2} + bx + c = 0$ is $x \in R$ as this quadratic is defined for any value of x belonging to real axis from$ - \infty {\text{ to }} + \infty $.
Complete step-by-step solution -
Given equation
$y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6} $
Now to find out the domain the function which is in square root is always greater than or equal to zero.
$ \Rightarrow \sin x + \cos x \geqslant 0$ ............. (1) and $7x - {x^2} - 6 \geqslant 0$........................... (2)
Now first solve first equation we have,
$ \Rightarrow \sin x + \cos x \geqslant 0$
Now multiply and divide by $\sqrt 2 $ we have,
$ \Rightarrow \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} \times \sin x + \dfrac{1}{{\sqrt 2 }} \times \cos x} \right) \geqslant 0$
Now as we know that $\sin {45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \sqrt 2 \left( {\cos 45 \times \sin x + \sin 45 \times \cos x} \right) \geqslant 0$
$ \Rightarrow \left( {\cos {{45}^0} \times \sin x + \sin {{45}^0} \times \cos x} \right) \geqslant 0$
Now as we know that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ so use this property in above equation we have,
$ \Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) \geqslant 0,{\text{ }}\left[ {\because {{45}^0} = \dfrac{\pi }{4}} \right]$
Now as we know $\sin x \geqslant 0,{\text{ }}x \in \left[ {0,\pi } \right],\left[ {2\pi ,3\pi } \right],....$
$ \Rightarrow 0 \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant \pi $ and $2\pi \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant 3\pi $ .................
$ \Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \pi - \dfrac{\pi }{4}$ and $2\pi - \dfrac{\pi }{4} \leqslant x \leqslant 3\pi - \dfrac{\pi }{4}$ .................
$ \Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \dfrac{{3\pi }}{4}$ and $\dfrac{{7\pi }}{4} \leqslant x \leqslant \dfrac{{11\pi }}{4}$
$ \Rightarrow x \in \left[ { - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}} \right],\left[ {\dfrac{{7\pi }}{4},\dfrac{{11\pi }}{4}} \right]$................. (3)
Now consider equation (2) we have,
$ \Rightarrow 7x - {x^2} - 6 \geqslant 0$
Now multiply by (-1) so the inequality sign reversed so we have,
$ \Rightarrow - 7x + {x^2} + 6 \leqslant 0$
$ \Rightarrow {x^2} - 7x + 6 \leqslant 0$
Now factorize this equation we have,
$ \Rightarrow {x^2} - x - 6x + 6 \leqslant 0$
$ \Rightarrow x\left( {x - 1} \right) - 6\left( {x - 1} \right) \leqslant 0$
$ \Rightarrow \left( {x - 1} \right)\left( {x - 6} \right) \leqslant 0$
$ \Rightarrow x \in \left[ {1,6} \right]$............................. (4)
So the domain of the given equation is the intersection region of equation (3) and (4).
Now $\dfrac{{ - \pi }}{4} < 1$, $\dfrac{{3\pi }}{4} > 1$, $\dfrac{{7\pi }}{4} < 6$, $\dfrac{{11\pi }}{4} > 6$
Now the common region is shown in the above diagram so the domain of the given function is
$ \Rightarrow \left[ {1,\dfrac{{3\pi }}{4}} \right] \cup \left[ {\dfrac{{7\pi }}{4},6} \right]$
So on comparing with $\left[ {p,\dfrac{{q\pi }}{4}} \right] \cup \left[ {\dfrac{{r\pi }}{4},s} \right]$
$ \Rightarrow p = 1,q = 3,r = 7,s = 6$
So the value of p + q + r + s is
$ \Rightarrow p + q + r + s = 1 + 3 + 7 + 6 = 17$
So this is the required answer.
Note – The domain of a function corresponds to the possible values of the independent variable that is x in this case, for which the entire function is defined. For example the domain of a quadratic function like $a{x^2} + bx + c = 0$ is $x \in R$ as this quadratic is defined for any value of x belonging to real axis from$ - \infty {\text{ to }} + \infty $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

