Answer
Verified
453.9k+ views
Hint:-
- Dimension of a quantity is to find the equation\[{M^a}{L^b}{T^c}\],\[a\], \[b\], and \[c\] are just numbers.
- From the question one of the quantity should depends up on mass \[M\]
- From product of these two ie, \[PQ \times (\dfrac{P}{Q})\] will get the \[P\] and \[PQ \times (\dfrac{Q}{P})\] will get \[Q\]
Complete step by step solution:-
We could do this question by two ways
One is checking each option.
Force and velocity
Force \[F = ma\]
Dimension of acceleration \[a = \dfrac{{{d^2}x}}{{d{t^2}}} \equiv L{T^{ - 2}}\]
\[x\] is the displacement \[x \equiv L\]and time \[t \equiv {T^1}\]
Here P, Dimension of force \[F = ma \equiv {M^1}{L^1}{T^{ - 2}}\]
Q , Dimension of velocity \[V = \dfrac{{dx}}{{dt}} \equiv {L^1}{T^{ - 1}}\]
\[PQ \equiv {M^1}{L^1}{T^{ - 2}} \times {L^1}{T^{ - 1}} \equiv M{L^2}{T^{ - 3}}\] Not correct.
(B) Momentum and displacement
Here, \[P\] Dimension of momentum \[p = mv \equiv {M^1}{L^1}{T^{ - 1}}\]
\[Q\] , Dimension of displacement \[S \equiv {L^1}\]
\[PQ = {M^1}{L^1}{T^{ - 1}} \times {L^1} = {M^1}{L^2}{T^{ - 1}}\]Not correct.
(C) .Force and displacement
Here P, Dimension of force \[F = ma \equiv {M^1}{L^1}{T^{ - 2}}\]
\[Q\] , Dimension of displacement \[S \equiv {L^1}\]
\[PQ = {M^1}{L^1}{T^{ - 2}} \times {L^1} = {M^1}{L^2}{T^{ - 2}}\]
\[\dfrac{P}{Q} = {M^1}{L^1}{T^{ - 2}}/{L^1} = {M^1}{L^0}{T^{ - 2}}\]
Option is correct.
(D).Work and velocity
Work \[W = F \bullet s\]
Dimension of displacement \[s \equiv {L^1}\]
Here, P Dimension of \[W \equiv {M^1}{L^1}{T^{ - 2}} \times {L^1}{T^0} \equiv {M^1}{L^2}{T^{ - 2}}\]
Q, Dimension of velocity \[V = \dfrac{{dx}}{{dt}} \equiv {L^1}{T^{ - 1}}\]
\[PQ = {M^1}{L^2}{T^{ - 2}} \times {L^1}{T^{ - 1}} = {M^1}{L^3}{T^{ - 3}}\] Not correct.
Other way is
\[PQ = {M^1}{L^2}{T^{ - 2}}\]
\[\dfrac{P}{Q} = {M^1}{L^0}{T^{ - 2}}\]
\[PQ \times \dfrac{P}{Q} = {P^2} = {M^1}{L^2}{T^{ - 2}} \times {M^1}{L^0}{T^{ - 2}} = {M^2}{L^2}{T^{ - 4}}\]
Take root, \[P = {M^1}{L^1}{T^{ - 2}}\]
\[PQ \times \dfrac{Q}{P} = {Q^2} = {M^1}{L^2}{T^{ - 2}}/{M^1}{L^0}{T^{ - 2}} = {M^0}{L^2}{T^0}\]
Take root, \[Q = {M^0}{L^1}{T^0}\]
From the option \[P\]is the Dimension of Force.
\[Q\] is the dimension of length or displacement.
So the answer is (C) .Force and displacement
Note:-
- Unit of work is Joule \[\left( J \right).\]
- Unit of force is Newton \[\left( N \right)\].
- In dimensional analysis we couldn’t consider the dimensionless constants like \[\pi ,\theta \],etc.
- From dimensional analysis we can’t distinguish scalar or vector, for example distance and displacement have the same dimension of length.
- If the Dimensions of both sides of the equation are not matching the equation is not correct.
- Dimension of a quantity is to find the equation\[{M^a}{L^b}{T^c}\],\[a\], \[b\], and \[c\] are just numbers.
- From the question one of the quantity should depends up on mass \[M\]
- From product of these two ie, \[PQ \times (\dfrac{P}{Q})\] will get the \[P\] and \[PQ \times (\dfrac{Q}{P})\] will get \[Q\]
Complete step by step solution:-
We could do this question by two ways
One is checking each option.
Force and velocity
Force \[F = ma\]
Dimension of acceleration \[a = \dfrac{{{d^2}x}}{{d{t^2}}} \equiv L{T^{ - 2}}\]
\[x\] is the displacement \[x \equiv L\]and time \[t \equiv {T^1}\]
Here P, Dimension of force \[F = ma \equiv {M^1}{L^1}{T^{ - 2}}\]
Q , Dimension of velocity \[V = \dfrac{{dx}}{{dt}} \equiv {L^1}{T^{ - 1}}\]
\[PQ \equiv {M^1}{L^1}{T^{ - 2}} \times {L^1}{T^{ - 1}} \equiv M{L^2}{T^{ - 3}}\] Not correct.
(B) Momentum and displacement
Here, \[P\] Dimension of momentum \[p = mv \equiv {M^1}{L^1}{T^{ - 1}}\]
\[Q\] , Dimension of displacement \[S \equiv {L^1}\]
\[PQ = {M^1}{L^1}{T^{ - 1}} \times {L^1} = {M^1}{L^2}{T^{ - 1}}\]Not correct.
(C) .Force and displacement
Here P, Dimension of force \[F = ma \equiv {M^1}{L^1}{T^{ - 2}}\]
\[Q\] , Dimension of displacement \[S \equiv {L^1}\]
\[PQ = {M^1}{L^1}{T^{ - 2}} \times {L^1} = {M^1}{L^2}{T^{ - 2}}\]
\[\dfrac{P}{Q} = {M^1}{L^1}{T^{ - 2}}/{L^1} = {M^1}{L^0}{T^{ - 2}}\]
Option is correct.
(D).Work and velocity
Work \[W = F \bullet s\]
Dimension of displacement \[s \equiv {L^1}\]
Here, P Dimension of \[W \equiv {M^1}{L^1}{T^{ - 2}} \times {L^1}{T^0} \equiv {M^1}{L^2}{T^{ - 2}}\]
Q, Dimension of velocity \[V = \dfrac{{dx}}{{dt}} \equiv {L^1}{T^{ - 1}}\]
\[PQ = {M^1}{L^2}{T^{ - 2}} \times {L^1}{T^{ - 1}} = {M^1}{L^3}{T^{ - 3}}\] Not correct.
Other way is
\[PQ = {M^1}{L^2}{T^{ - 2}}\]
\[\dfrac{P}{Q} = {M^1}{L^0}{T^{ - 2}}\]
\[PQ \times \dfrac{P}{Q} = {P^2} = {M^1}{L^2}{T^{ - 2}} \times {M^1}{L^0}{T^{ - 2}} = {M^2}{L^2}{T^{ - 4}}\]
Take root, \[P = {M^1}{L^1}{T^{ - 2}}\]
\[PQ \times \dfrac{Q}{P} = {Q^2} = {M^1}{L^2}{T^{ - 2}}/{M^1}{L^0}{T^{ - 2}} = {M^0}{L^2}{T^0}\]
Take root, \[Q = {M^0}{L^1}{T^0}\]
From the option \[P\]is the Dimension of Force.
\[Q\] is the dimension of length or displacement.
So the answer is (C) .Force and displacement
Note:-
- Unit of work is Joule \[\left( J \right).\]
- Unit of force is Newton \[\left( N \right)\].
- In dimensional analysis we couldn’t consider the dimensionless constants like \[\pi ,\theta \],etc.
- From dimensional analysis we can’t distinguish scalar or vector, for example distance and displacement have the same dimension of length.
- If the Dimensions of both sides of the equation are not matching the equation is not correct.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE