
The diameter of the moon is about 3500 km. What will be the diameter of the image formed by a concave mirror of radius 3m? Assume that the distance of the moon is about $3.5\times {{10}^{5}}$ km.
(a) 5 mm
(b) 10 mm
(c) 15 mm
(d) 20 mm
Answer
506.1k+ views
Hint: Use the mirror’s formula given as $\dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f}$ where u is the object’s distance, v is the image’s distance and f is the focal length of the mirror. To calculate the value of f, use the relation $f=\dfrac{R}{2}$ where R is the radius of the concave mirror. Find the value of $\dfrac{-v}{u}$ using the data given and equate it with $\dfrac{h'}{h}$ where h is the height of the object and h’ is the height of the image. Consider the diameter as the object and calculate the value of h’ to get the answer. Take the value of u negative in the mirror’s formula.
Complete step by step solution:
Here we have been provided with the diameter of the moon whose image is formed by a concave mirror. We are asked to find the diameter of the image of the moon.
Now, we know that the mirror’s formula is given as $\dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f}$ where u is the object’s distance, v is the image’s distance and f is the focal length of the mirror. Here f is given as $f=\dfrac{R}{2}$ where R is the radius of curvature of the concave mirror. Therefore, substituting in the formulas we get,
$\Rightarrow \dfrac{1}{u}+\dfrac{1}{v}=\dfrac{2}{R}$
Multiplying both the sides with u we get,
$\begin{align}
& \Rightarrow 1+\dfrac{u}{v}=\dfrac{2u}{R} \\
& \Rightarrow \dfrac{u}{v}=\dfrac{2u}{R}-1 \\
\end{align}$
Substituting the values of u and f after converting them into the unit meter and using the proper sign convention we get,
$\begin{align}
& \Rightarrow \dfrac{u}{v}=-\left( \dfrac{2\times 3.5\times {{10}^{5}}\times {{10}^{3}}}{3} \right)-1 \\
& \Rightarrow \dfrac{u}{v}=-\left( \dfrac{7\times {{10}^{8}}}{3} \right)-1 \\
& \Rightarrow \dfrac{-u}{v}=\left( \dfrac{7\times {{10}^{8}}}{3} \right)+1 \\
\end{align}$
Here we can neglect 1 because $\left( \dfrac{7\times {{10}^{8}}}{3} \right)$ is a very large quantity, so we get,
$\begin{align}
& \Rightarrow \dfrac{-u}{v}=\left( \dfrac{7\times {{10}^{8}}}{3} \right) \\
& \Rightarrow \dfrac{-v}{u}=\dfrac{3\times {{10}^{-8}}}{7} \\
\end{align}$
Now, we know that the magnification by a plane mirror is given as $\dfrac{-v}{u}$ and in terms of the height of the image (h’) and height of the object (h) as $\dfrac{h'}{h}$, so considering the diameter of the moon as the object we have,
$\Rightarrow \dfrac{-v}{u}=\dfrac{h'}{h}$
Substituting the given values we get,
$\begin{align}
& \Rightarrow \dfrac{h'}{3500\times {{10}^{3}}}=\dfrac{3\times {{10}^{-8}}}{7} \\
& \Rightarrow h'=\dfrac{3\times {{10}^{-8}}}{7}\times 3500\times {{10}^{3}} \\
& \Rightarrow h'=15\times {{10}^{-3}}m \\
\end{align}$
We know that 1 mm = 0.001 m so we get,
$\Rightarrow h'=15mm$
Therefore, the diameter of the image of the moon is 15 mm.
So, the correct answer is “Option c”.
Note: You can say that the image of the moon will be formed at the focus of the mirror because the moon can be assumed to be situated at infinity. So there can be another method by which we can solve the question. In that method properties of the similar triangles will be used, however the above process that we have applied is nothing but the physical interpretation of the properties of similar triangles. Remember the sign convention used in mirror and lens formula.
Complete step by step solution:
Here we have been provided with the diameter of the moon whose image is formed by a concave mirror. We are asked to find the diameter of the image of the moon.
Now, we know that the mirror’s formula is given as $\dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f}$ where u is the object’s distance, v is the image’s distance and f is the focal length of the mirror. Here f is given as $f=\dfrac{R}{2}$ where R is the radius of curvature of the concave mirror. Therefore, substituting in the formulas we get,
$\Rightarrow \dfrac{1}{u}+\dfrac{1}{v}=\dfrac{2}{R}$
Multiplying both the sides with u we get,
$\begin{align}
& \Rightarrow 1+\dfrac{u}{v}=\dfrac{2u}{R} \\
& \Rightarrow \dfrac{u}{v}=\dfrac{2u}{R}-1 \\
\end{align}$
Substituting the values of u and f after converting them into the unit meter and using the proper sign convention we get,
$\begin{align}
& \Rightarrow \dfrac{u}{v}=-\left( \dfrac{2\times 3.5\times {{10}^{5}}\times {{10}^{3}}}{3} \right)-1 \\
& \Rightarrow \dfrac{u}{v}=-\left( \dfrac{7\times {{10}^{8}}}{3} \right)-1 \\
& \Rightarrow \dfrac{-u}{v}=\left( \dfrac{7\times {{10}^{8}}}{3} \right)+1 \\
\end{align}$
Here we can neglect 1 because $\left( \dfrac{7\times {{10}^{8}}}{3} \right)$ is a very large quantity, so we get,
$\begin{align}
& \Rightarrow \dfrac{-u}{v}=\left( \dfrac{7\times {{10}^{8}}}{3} \right) \\
& \Rightarrow \dfrac{-v}{u}=\dfrac{3\times {{10}^{-8}}}{7} \\
\end{align}$
Now, we know that the magnification by a plane mirror is given as $\dfrac{-v}{u}$ and in terms of the height of the image (h’) and height of the object (h) as $\dfrac{h'}{h}$, so considering the diameter of the moon as the object we have,
$\Rightarrow \dfrac{-v}{u}=\dfrac{h'}{h}$
Substituting the given values we get,
$\begin{align}
& \Rightarrow \dfrac{h'}{3500\times {{10}^{3}}}=\dfrac{3\times {{10}^{-8}}}{7} \\
& \Rightarrow h'=\dfrac{3\times {{10}^{-8}}}{7}\times 3500\times {{10}^{3}} \\
& \Rightarrow h'=15\times {{10}^{-3}}m \\
\end{align}$
We know that 1 mm = 0.001 m so we get,
$\Rightarrow h'=15mm$
Therefore, the diameter of the image of the moon is 15 mm.
So, the correct answer is “Option c”.
Note: You can say that the image of the moon will be formed at the focus of the mirror because the moon can be assumed to be situated at infinity. So there can be another method by which we can solve the question. In that method properties of the similar triangles will be used, however the above process that we have applied is nothing but the physical interpretation of the properties of similar triangles. Remember the sign convention used in mirror and lens formula.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

