
The diameter of an ice cream cone is 7 cm and its height is 12 cm. Find the volume of ice-cream that the cone can contain.
Answer
592.8k+ views
Hint: We will proceed by finding the volume of cone by using the formula ${\text{V = }}\dfrac{{1}}{{3}}{\pi }{{\text{r}}^{\text{2}}}{\text{h}}$. As diameter is given, we will find the radius by dividing diameter by 2. We will substitute the values of radius and height in the formula above to find the volume of the cone.
Complete step by step solution: The ice cream cone is in the shape of a cone. The volume of ice-cream that the cone can contain is equal to the volume of the cone. The volume of the cone can be determined after knowing its physical dimensions i.e. radius and height.
Let ${\text{h}}$ be the height of the cone and ${\text{r}}$ be its radius.
As the height of the ice cream cone is given as 12 cm.
So, ${\text{h = 12cm}}$
The diameter of the cone is given as 7 cm.
We know that the diameter of a cone is twice its radius, implying, the radius will be half of the diameter.
So, ${\text{r = }}\dfrac{7}{2}{\text{cm}}$
Now, V be the volume of a cone having height ${\text{h}}$ and radius ${\text{r}}$
We know the formula for the volume of a cone, i.e.
So, \[V = \dfrac{1}{3}\pi {r^2}h\]
Substituting, ${\text{r = }}\dfrac{{\text{7}}}{{\text{2}}}{\text{cm}}$ and ${\text{h = 12cm}}$ in the above formula,
${\text{V = }}\dfrac{{\text{1}}}{{\text{3}}}{\pi }{\left( {\dfrac{{\text{7}}}{{\text{2}}}} \right)^{\text{2}}}{\text{12c}}{{\text{m}}^{\text{3}}}$
$V = \dfrac{1}{3}\pi \dfrac{{49}}{4}12$
${\text{V = 49}\pi \text{c}}{{\text{m}}^{\text{3}}}$
So, the volume of cone is $49\pi c{m^3}$
Therefore, the volume of ice-cream that the cone can contain is $49\pi c{m^3}$
Note: Students must remember the formula of volume of different 3D objects carefully and do not get confused with radius and diameter of an object. The volumes of various 3D objects are:
Sphere with radius ${\text{r = }}\dfrac{{\text{4}}}{{\text{3}}}{\pi}{{\text{r}}^{\text{3}}}$
Cube with edge a: \[{{\text{a}}^{\text{3}}}\]
Cuboid with dimensions l, b, h: ${\text{l} \times \text{b} \times \text{h}}$
Cylinder with height h and radius r: ${\pi}{{\text{r}}^{\text{2}}}{\text{h}}$
These formulae must be remembered to solve the problems.
Complete step by step solution: The ice cream cone is in the shape of a cone. The volume of ice-cream that the cone can contain is equal to the volume of the cone. The volume of the cone can be determined after knowing its physical dimensions i.e. radius and height.
Let ${\text{h}}$ be the height of the cone and ${\text{r}}$ be its radius.
As the height of the ice cream cone is given as 12 cm.
So, ${\text{h = 12cm}}$
The diameter of the cone is given as 7 cm.
We know that the diameter of a cone is twice its radius, implying, the radius will be half of the diameter.
So, ${\text{r = }}\dfrac{7}{2}{\text{cm}}$
Now, V be the volume of a cone having height ${\text{h}}$ and radius ${\text{r}}$
We know the formula for the volume of a cone, i.e.
So, \[V = \dfrac{1}{3}\pi {r^2}h\]
Substituting, ${\text{r = }}\dfrac{{\text{7}}}{{\text{2}}}{\text{cm}}$ and ${\text{h = 12cm}}$ in the above formula,
${\text{V = }}\dfrac{{\text{1}}}{{\text{3}}}{\pi }{\left( {\dfrac{{\text{7}}}{{\text{2}}}} \right)^{\text{2}}}{\text{12c}}{{\text{m}}^{\text{3}}}$
$V = \dfrac{1}{3}\pi \dfrac{{49}}{4}12$
${\text{V = 49}\pi \text{c}}{{\text{m}}^{\text{3}}}$
So, the volume of cone is $49\pi c{m^3}$
Therefore, the volume of ice-cream that the cone can contain is $49\pi c{m^3}$
Note: Students must remember the formula of volume of different 3D objects carefully and do not get confused with radius and diameter of an object. The volumes of various 3D objects are:
Sphere with radius ${\text{r = }}\dfrac{{\text{4}}}{{\text{3}}}{\pi}{{\text{r}}^{\text{3}}}$
Cube with edge a: \[{{\text{a}}^{\text{3}}}\]
Cuboid with dimensions l, b, h: ${\text{l} \times \text{b} \times \text{h}}$
Cylinder with height h and radius r: ${\pi}{{\text{r}}^{\text{2}}}{\text{h}}$
These formulae must be remembered to solve the problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

