
The diameter of an ice cream cone is 7 cm and its height is 12 cm. Find the volume of ice-cream that the cone can contain.
Answer
582.3k+ views
Hint: We will proceed by finding the volume of cone by using the formula ${\text{V = }}\dfrac{{1}}{{3}}{\pi }{{\text{r}}^{\text{2}}}{\text{h}}$. As diameter is given, we will find the radius by dividing diameter by 2. We will substitute the values of radius and height in the formula above to find the volume of the cone.
Complete step by step solution: The ice cream cone is in the shape of a cone. The volume of ice-cream that the cone can contain is equal to the volume of the cone. The volume of the cone can be determined after knowing its physical dimensions i.e. radius and height.
Let ${\text{h}}$ be the height of the cone and ${\text{r}}$ be its radius.
As the height of the ice cream cone is given as 12 cm.
So, ${\text{h = 12cm}}$
The diameter of the cone is given as 7 cm.
We know that the diameter of a cone is twice its radius, implying, the radius will be half of the diameter.
So, ${\text{r = }}\dfrac{7}{2}{\text{cm}}$
Now, V be the volume of a cone having height ${\text{h}}$ and radius ${\text{r}}$
We know the formula for the volume of a cone, i.e.
So, \[V = \dfrac{1}{3}\pi {r^2}h\]
Substituting, ${\text{r = }}\dfrac{{\text{7}}}{{\text{2}}}{\text{cm}}$ and ${\text{h = 12cm}}$ in the above formula,
${\text{V = }}\dfrac{{\text{1}}}{{\text{3}}}{\pi }{\left( {\dfrac{{\text{7}}}{{\text{2}}}} \right)^{\text{2}}}{\text{12c}}{{\text{m}}^{\text{3}}}$
$V = \dfrac{1}{3}\pi \dfrac{{49}}{4}12$
${\text{V = 49}\pi \text{c}}{{\text{m}}^{\text{3}}}$
So, the volume of cone is $49\pi c{m^3}$
Therefore, the volume of ice-cream that the cone can contain is $49\pi c{m^3}$
Note: Students must remember the formula of volume of different 3D objects carefully and do not get confused with radius and diameter of an object. The volumes of various 3D objects are:
Sphere with radius ${\text{r = }}\dfrac{{\text{4}}}{{\text{3}}}{\pi}{{\text{r}}^{\text{3}}}$
Cube with edge a: \[{{\text{a}}^{\text{3}}}\]
Cuboid with dimensions l, b, h: ${\text{l} \times \text{b} \times \text{h}}$
Cylinder with height h and radius r: ${\pi}{{\text{r}}^{\text{2}}}{\text{h}}$
These formulae must be remembered to solve the problems.
Complete step by step solution: The ice cream cone is in the shape of a cone. The volume of ice-cream that the cone can contain is equal to the volume of the cone. The volume of the cone can be determined after knowing its physical dimensions i.e. radius and height.
Let ${\text{h}}$ be the height of the cone and ${\text{r}}$ be its radius.
As the height of the ice cream cone is given as 12 cm.
So, ${\text{h = 12cm}}$
The diameter of the cone is given as 7 cm.
We know that the diameter of a cone is twice its radius, implying, the radius will be half of the diameter.
So, ${\text{r = }}\dfrac{7}{2}{\text{cm}}$
Now, V be the volume of a cone having height ${\text{h}}$ and radius ${\text{r}}$
We know the formula for the volume of a cone, i.e.
So, \[V = \dfrac{1}{3}\pi {r^2}h\]
Substituting, ${\text{r = }}\dfrac{{\text{7}}}{{\text{2}}}{\text{cm}}$ and ${\text{h = 12cm}}$ in the above formula,
${\text{V = }}\dfrac{{\text{1}}}{{\text{3}}}{\pi }{\left( {\dfrac{{\text{7}}}{{\text{2}}}} \right)^{\text{2}}}{\text{12c}}{{\text{m}}^{\text{3}}}$
$V = \dfrac{1}{3}\pi \dfrac{{49}}{4}12$
${\text{V = 49}\pi \text{c}}{{\text{m}}^{\text{3}}}$
So, the volume of cone is $49\pi c{m^3}$
Therefore, the volume of ice-cream that the cone can contain is $49\pi c{m^3}$
Note: Students must remember the formula of volume of different 3D objects carefully and do not get confused with radius and diameter of an object. The volumes of various 3D objects are:
Sphere with radius ${\text{r = }}\dfrac{{\text{4}}}{{\text{3}}}{\pi}{{\text{r}}^{\text{3}}}$
Cube with edge a: \[{{\text{a}}^{\text{3}}}\]
Cuboid with dimensions l, b, h: ${\text{l} \times \text{b} \times \text{h}}$
Cylinder with height h and radius r: ${\pi}{{\text{r}}^{\text{2}}}{\text{h}}$
These formulae must be remembered to solve the problems.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

