
The density of a DNA sample is 1.1 g/ml and its molar mass determined by the cryoscopic method was found to be $\text{6 }\times \text{ 1}{{\text{0}}^{8}}\text{gmole}$. What is the volume occupied by one DNA molecule? $\text{(}{{\text{N}}_{\text{A}}}\text{ = 6 }\times \text{ 1}{{\text{0}}^{23}})$
A. $\text{5}\text{.45 }\times \text{ 1}{{\text{0}}^{8}}\text{ ml}$
B. $\text{1}\text{.83 }\times \text{ 1}{{\text{0}}^{-9}}\text{ ml}$
C. $\text{9}\text{.06 }\times \text{ 1}{{\text{0}}^{-16}}\text{ ml}$
D. $\text{1}\text{.09 }\times \text{ 1}{{\text{0}}^{-13}}\text{ ml}$
Answer
483.9k+ views
Hint: Density of a substance is defined as the ratio of mass by volume which has a unit of kilogram per cubic metre. Density is denoted by $\rho $. The formula to calculate no. of the molecule is $\dfrac{\text{No}\text{. of molecules}}{{{\text{N}}_{\text{A}}}}\text{ = }\dfrac{\text{Mass}}{\text{Molar mass}}$. Here, ${{\text{N}}_{\text{A}}}$ is the Avogadro's number and mass is the mass of the DNA which is to be calculated and Molar mass of the DNA is also given in the question.
Complete answer:
-It is given in the question that the density of the DNA is 1.1 g/mol and we have to calculate the volume that is occupied by One DNA molecule.
-So, according to the formula of density, the mass of the DNA and volume should be needed.
-Now, we will calculate the mass of one DNA molecule first i.e.
$\dfrac{\text{No}\text{. of molecules}}{{{\text{N}}_{\text{A}}}}\text{ = }\dfrac{\text{Mass}}{\text{Molar mass}}$
$\text{Mass = }\dfrac{\text{No}\text{. of molecules }\times \text{ Molar mass}}{{{\text{N}}_{\text{A}}}}$
-Here, ${{\text{N}}_{\text{A}}}$ is called the Avogadro's number whose value is given in the question i.e. $\text{6 }\times \text{ 1}{{\text{0}}^{23}}$
$\text{Mass = }\dfrac{\text{1 }\times \text{ 6 }\times \text{ 1}{{\text{0}}^{8}}}{6\text{ }\times \text{ 1}{{\text{0}}^{23}}}$
$\text{Mass = 1}{{\text{0}}^{-15}}\text{gm}$
-Now, we know that the density of 1 molecule of DNA is 1.1 g/mol. So, the volume will be:
$\text{Volume = }\dfrac{\text{Mass}}{\text{Density}}$
$\text{Volume = }\dfrac{{{10}^{-15}}}{1.1}$
$\text{Volume = 0}\text{.906 }\times \text{ 1}{{\text{0}}^{-15}}\text{ml or 9}\text{.06 }\times \text{ 1}{{\text{0}}^{-16}}\text{ml}$
So, the correct answer is “Option C”.
Note: Cryoscopic method is the method which is used to determine the process of unknown molecular weight of a substance with the help of cryoscopic constant that is denoted by ${{\text{K}}_{\text{f}}}$. Moreover, it gives the relationship between the freezing point and molality (Ratio of no. of a mole of solute to the volume of solvent in Kg).
Complete answer:
-It is given in the question that the density of the DNA is 1.1 g/mol and we have to calculate the volume that is occupied by One DNA molecule.
-So, according to the formula of density, the mass of the DNA and volume should be needed.
-Now, we will calculate the mass of one DNA molecule first i.e.
$\dfrac{\text{No}\text{. of molecules}}{{{\text{N}}_{\text{A}}}}\text{ = }\dfrac{\text{Mass}}{\text{Molar mass}}$
$\text{Mass = }\dfrac{\text{No}\text{. of molecules }\times \text{ Molar mass}}{{{\text{N}}_{\text{A}}}}$
-Here, ${{\text{N}}_{\text{A}}}$ is called the Avogadro's number whose value is given in the question i.e. $\text{6 }\times \text{ 1}{{\text{0}}^{23}}$
$\text{Mass = }\dfrac{\text{1 }\times \text{ 6 }\times \text{ 1}{{\text{0}}^{8}}}{6\text{ }\times \text{ 1}{{\text{0}}^{23}}}$
$\text{Mass = 1}{{\text{0}}^{-15}}\text{gm}$
-Now, we know that the density of 1 molecule of DNA is 1.1 g/mol. So, the volume will be:
$\text{Volume = }\dfrac{\text{Mass}}{\text{Density}}$
$\text{Volume = }\dfrac{{{10}^{-15}}}{1.1}$
$\text{Volume = 0}\text{.906 }\times \text{ 1}{{\text{0}}^{-15}}\text{ml or 9}\text{.06 }\times \text{ 1}{{\text{0}}^{-16}}\text{ml}$
So, the correct answer is “Option C”.
Note: Cryoscopic method is the method which is used to determine the process of unknown molecular weight of a substance with the help of cryoscopic constant that is denoted by ${{\text{K}}_{\text{f}}}$. Moreover, it gives the relationship between the freezing point and molality (Ratio of no. of a mole of solute to the volume of solvent in Kg).
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
