
The degree of dissociation of acetic acid of ($0.1\,{\text{mol}}\,\,{{\text{L}}^{ - 1}}$) in water ( ${{\text{K}}_{\text{a}}}$ of acetic acid is ${10^{ - 5}}$) is:
A. \[0.01\]
B. \[0.5\]
C. \[0.1\]
D. \[1.0\]
Answer
548.1k+ views
Hint: The dissociation constant is determined as the product of the square of the degree of dissociation and concentration. The degree of dissociation tells how much an electrolyte dissociates in solution. The degree of dissociation is calculated for the weak electrolyte.
Complete Step by step answer:The formula which relates the degree of dissociation with dissociation constant is as follows:
${K_a} = \,\dfrac{{C{\alpha ^2}}}{{1 - \alpha }}$
Where,
${K_a}$ is the acid dissociation constant.
$\,C$ is the concentration.
$\alpha $ is the degree of dissociation
Mostly weak electrolyte dissociates very less so, for weak electrolyte the degree of dissociation is very-very less than one,$\alpha < < 1$ so, the value of $1 - \alpha $ can be taken to equal to$1$so, the formula of the dissociation constant can be reduced as, ${K_a} = \,C{\alpha ^2}$.
Rearrange the formula for degree of dissociation as follows:
\[{\alpha ^2} = \dfrac{{{{\text{K}}_{\text{a}}}}}{{\text{C}}}\]
\[\Rightarrow \alpha = \sqrt {\dfrac{{{K_a}}}{C}} \]
Substitute $0.1\,{\text{mol}}\,\,{{\text{L}}^{ - 1}}$for the concentration and ${10^{ - 5}}$ for dissociation constant.
\[\alpha = \sqrt {\dfrac{{{{10}^{ - 5}}}}{{0.1}}} \]
\[\Rightarrow \alpha = \sqrt {1\, \times {{10}^{ - 4}}} \]
$\Rightarrow \alpha = \,0.01$
So, the degree of dissociation for acetic acid in water is $\,0.01$.
Therefore, option (A) $\,0.01$, is correct.
Note: The degree of dissociation tells the dissociated amount of the weak electrolyte. The strong electrolyte dissociates completely, so it is not calculated for the strong electrolyte. A similar formula is used for the determination of the degree of dissociation for a weak base only the ${{\text{K}}_{\text{a}}}$ is replaced with ${{\text{K}}_{\text{b}}}$ where, ${{\text{K}}_{\text{b}}}$ is the base dissociation constant. The degree of dissociation can also be calculated by using equivalent conductance at a concentration and equivalent conductance at infinite dilution. The formula to calculate the degree of dissociation is $\alpha = \,\dfrac{{{\lambda _m}}}{{\lambda _m^ \circ }}$. Where, ${\lambda _m}$is the equivalent conductance at a concentration and $\lambda _m^ \circ $is the equivalent conductance at infinite dilution.
Complete Step by step answer:The formula which relates the degree of dissociation with dissociation constant is as follows:
${K_a} = \,\dfrac{{C{\alpha ^2}}}{{1 - \alpha }}$
Where,
${K_a}$ is the acid dissociation constant.
$\,C$ is the concentration.
$\alpha $ is the degree of dissociation
Mostly weak electrolyte dissociates very less so, for weak electrolyte the degree of dissociation is very-very less than one,$\alpha < < 1$ so, the value of $1 - \alpha $ can be taken to equal to$1$so, the formula of the dissociation constant can be reduced as, ${K_a} = \,C{\alpha ^2}$.
Rearrange the formula for degree of dissociation as follows:
\[{\alpha ^2} = \dfrac{{{{\text{K}}_{\text{a}}}}}{{\text{C}}}\]
\[\Rightarrow \alpha = \sqrt {\dfrac{{{K_a}}}{C}} \]
Substitute $0.1\,{\text{mol}}\,\,{{\text{L}}^{ - 1}}$for the concentration and ${10^{ - 5}}$ for dissociation constant.
\[\alpha = \sqrt {\dfrac{{{{10}^{ - 5}}}}{{0.1}}} \]
\[\Rightarrow \alpha = \sqrt {1\, \times {{10}^{ - 4}}} \]
$\Rightarrow \alpha = \,0.01$
So, the degree of dissociation for acetic acid in water is $\,0.01$.
Therefore, option (A) $\,0.01$, is correct.
Note: The degree of dissociation tells the dissociated amount of the weak electrolyte. The strong electrolyte dissociates completely, so it is not calculated for the strong electrolyte. A similar formula is used for the determination of the degree of dissociation for a weak base only the ${{\text{K}}_{\text{a}}}$ is replaced with ${{\text{K}}_{\text{b}}}$ where, ${{\text{K}}_{\text{b}}}$ is the base dissociation constant. The degree of dissociation can also be calculated by using equivalent conductance at a concentration and equivalent conductance at infinite dilution. The formula to calculate the degree of dissociation is $\alpha = \,\dfrac{{{\lambda _m}}}{{\lambda _m^ \circ }}$. Where, ${\lambda _m}$is the equivalent conductance at a concentration and $\lambda _m^ \circ $is the equivalent conductance at infinite dilution.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

