
The curve described parametrically by $$x = {t^2} + t + 1,y = {t^2} - t + 1$$ represents
A) A pair of straight line
B) An eclipse
C) A parabola
D) A hyperbola
Answer
568.2k+ views
Hint: We have given two equations in the form of x and y, compare both equations and add and subtract it, after that compare both the equations, it will be similar to the parabola equation, we will get an answer.
Complete step-by-step answer:
We have, $$x = {t^2} + t + 1$$ .... (i)
and $$y = {t^2} - t + 1$$ .... (ii)
Now, $$x + y = 2(1 + {t^2})$$ .... (iii)
and $$x - y = 2t$$.... (iv)
Now, from Eqs. (iii) and (iv), we get
$$\eqalign{
& x + y = 2[1 + {\left( {\dfrac{{(x - y)}}{2}} \right)^2}] \cr
& \Rightarrow x + y = 2[\dfrac{{4 + {x^2} + {y^2} - 2xy}}{4}] \cr} $$
$$ \Rightarrow {x^2} + {y^2} - 2xy - 2x - 2y + 4 = 0\;{\text{ }}\;{\text{ }}\;$$ .... (v)
On comparing with, we get
$$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$
We get, $$a = 1,b = 1,c = 4,h = - 1,g = - 1,f = - 1$$
$$\vartriangle = abc + 2fgh - a{f^2} - b{g^2} - c{h^2}$$
Now,
$$\eqalign{
& \vartriangle = 1 \cdot 1 \cdot 4 + 2\left( { - 1} \right)\left( { - 1} \right)\left( { - 1} \right) - 1 \times {\left( { - 1} \right)^2} - 1 \times {\left( { - 1} \right)^2} - 4{\left( { - 1} \right)^2} \cr
& = 4 - 2 - 1 - 1 - 4 \cr
& = - 4 \cr} $$
, therefore, $$\vartriangle \ne 0$$
and $$ab - {h^2} = 1 \cdot 1 - {\left( 1 \right)^2} = 1 - 1 = 0$$
So, it is the equation of a parabola.
Note: We knew the equation of parabola, i.e. $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$. After comparing both the given equations it gets similar to the parabola equation, so the answer is the equation is of parabola.
Complete step-by-step answer:
We have, $$x = {t^2} + t + 1$$ .... (i)
and $$y = {t^2} - t + 1$$ .... (ii)
Now, $$x + y = 2(1 + {t^2})$$ .... (iii)
and $$x - y = 2t$$.... (iv)
Now, from Eqs. (iii) and (iv), we get
$$\eqalign{
& x + y = 2[1 + {\left( {\dfrac{{(x - y)}}{2}} \right)^2}] \cr
& \Rightarrow x + y = 2[\dfrac{{4 + {x^2} + {y^2} - 2xy}}{4}] \cr} $$
$$ \Rightarrow {x^2} + {y^2} - 2xy - 2x - 2y + 4 = 0\;{\text{ }}\;{\text{ }}\;$$ .... (v)
On comparing with, we get
$$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$
We get, $$a = 1,b = 1,c = 4,h = - 1,g = - 1,f = - 1$$
$$\vartriangle = abc + 2fgh - a{f^2} - b{g^2} - c{h^2}$$
Now,
$$\eqalign{
& \vartriangle = 1 \cdot 1 \cdot 4 + 2\left( { - 1} \right)\left( { - 1} \right)\left( { - 1} \right) - 1 \times {\left( { - 1} \right)^2} - 1 \times {\left( { - 1} \right)^2} - 4{\left( { - 1} \right)^2} \cr
& = 4 - 2 - 1 - 1 - 4 \cr
& = - 4 \cr} $$
, therefore, $$\vartriangle \ne 0$$
and $$ab - {h^2} = 1 \cdot 1 - {\left( 1 \right)^2} = 1 - 1 = 0$$
So, it is the equation of a parabola.
Note: We knew the equation of parabola, i.e. $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$. After comparing both the given equations it gets similar to the parabola equation, so the answer is the equation is of parabola.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

