
The crystal field stabilization energy (CFSE) \[{\text{[Fe(}}{{\text{H}}_2}{\text{O}}{{\text{)}}_6}]{\text{C}}{{\text{l}}_2}\] and \[{{\text{K}}_2}{\text{[NiC}}{{\text{l}}_4}]\], respectively, are:
a.) \[\text{-0}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
b.) \[\text{-0}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -1}\text{.2}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
c.) \[\text{-2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -1}\text{.2}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
d.) \[\text{-0}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
Answer
486.9k+ views
Hint: Crystal field theory states that there is a difference of \[{\text{10}}{{\text{D}}_{\text{q}}}\] between \[{{\text{e}}_{\text{g}}}\] and \[{{\text{t}}_{{\text{2g}}}}\] energy levels. When an electron goes into \[{{\text{t}}_{{\text{2g}}}}\] which is a lower energy level, it stabilizes the system by an amount of \[\text{-4}{{\text{D}}_{\text{q}}}\] and when an electron goes into \[{{\text{e}}_{\text{g}}}\] level, it destabilizes the system by \[\text{+6}{{\text{D}}_{\text{q}}}\].
Complete answer:
The stability which results due to placing of a transition metal ion into a field that is caused by the set of ligands which surround it, is called Crystal field stabilization energy. In the complex, \[\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]\text{C}{{\text{l}}_{2}}\], Fe forms a +2 ion i.e. \[{{\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]}^{+2}}\].
The electronic configuration of Iron in +2 becomes \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{3}}\].
is a weak field ligand and hence pairing of electrons does not occur. Electrons in \[{{\text{t}}_{\text{2g}}}\] are given as \[\text{t}_{\text{2g}}^{\text{2, 1, 1}}\].
Formula for calculating crystal field stabilization energy is \[\Delta \text{ = no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{t}}_{\text{2g}}}\text{ }\times \text{ (-0}\text{.4) + no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{e}}_{g}}\text{ }\times \text{ (0}\text{.6)}\]
Thus, for this complex - \[\Delta \text{ = 4}{{\Delta }_{0}}\times \text{ (-0}\text{.4) + 2}{{\Delta }_{0}}\text{ }\times \text{ (0}\text{.6)}\]
\[\Delta \text{ = - 0}\text{.4}{{\Delta }_{0}}\]
In the complex, \[{{\text{K}}_{2}}\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]\] charge on Nickel is +2 as it forms \[{{\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]}^{-2}}\].
The electronic configuration of Nickel in +2 is \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{8}}\].
is also a weak field ligand and hence pairing does not occur and the complex formed has tetrahedral geometry. Electrons in \[{{\text{e}}_{\text{g}}}\] are \[\text{e}_{\text{g}}^{\text{2, 2}}\].
Putting these values in the formula we get, \[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.6 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 0}\text{.4 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ = -2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 1}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
So, the correct answer is “Option A”.
Note: Complexes which have a higher number of unpaired electrons are called as high spin complexes and the ones which have low number of unpaired electrons are called as low spin complexes. Most of the time, high spin complexes have weak field ligands and hence their splitting energy has lower value. Conversely, low spin complexes have strong field ligands and hence have higher value of splitting energy.
Complete answer:
The stability which results due to placing of a transition metal ion into a field that is caused by the set of ligands which surround it, is called Crystal field stabilization energy. In the complex, \[\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]\text{C}{{\text{l}}_{2}}\], Fe forms a +2 ion i.e. \[{{\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]}^{+2}}\].
The electronic configuration of Iron in +2 becomes \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{3}}\].
is a weak field ligand and hence pairing of electrons does not occur. Electrons in \[{{\text{t}}_{\text{2g}}}\] are given as \[\text{t}_{\text{2g}}^{\text{2, 1, 1}}\].
Formula for calculating crystal field stabilization energy is \[\Delta \text{ = no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{t}}_{\text{2g}}}\text{ }\times \text{ (-0}\text{.4) + no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{e}}_{g}}\text{ }\times \text{ (0}\text{.6)}\]
Thus, for this complex - \[\Delta \text{ = 4}{{\Delta }_{0}}\times \text{ (-0}\text{.4) + 2}{{\Delta }_{0}}\text{ }\times \text{ (0}\text{.6)}\]
\[\Delta \text{ = - 0}\text{.4}{{\Delta }_{0}}\]
In the complex, \[{{\text{K}}_{2}}\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]\] charge on Nickel is +2 as it forms \[{{\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]}^{-2}}\].
The electronic configuration of Nickel in +2 is \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{8}}\].
is also a weak field ligand and hence pairing does not occur and the complex formed has tetrahedral geometry. Electrons in \[{{\text{e}}_{\text{g}}}\] are \[\text{e}_{\text{g}}^{\text{2, 2}}\].
Putting these values in the formula we get, \[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.6 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 0}\text{.4 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ = -2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 1}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
So, the correct answer is “Option A”.
Note: Complexes which have a higher number of unpaired electrons are called as high spin complexes and the ones which have low number of unpaired electrons are called as low spin complexes. Most of the time, high spin complexes have weak field ligands and hence their splitting energy has lower value. Conversely, low spin complexes have strong field ligands and hence have higher value of splitting energy.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
