
The crystal field stabilization energy (CFSE) \[{\text{[Fe(}}{{\text{H}}_2}{\text{O}}{{\text{)}}_6}]{\text{C}}{{\text{l}}_2}\] and \[{{\text{K}}_2}{\text{[NiC}}{{\text{l}}_4}]\], respectively, are:
a.) \[\text{-0}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
b.) \[\text{-0}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -1}\text{.2}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
c.) \[\text{-2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -1}\text{.2}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
d.) \[\text{-0}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
Answer
582k+ views
Hint: Crystal field theory states that there is a difference of \[{\text{10}}{{\text{D}}_{\text{q}}}\] between \[{{\text{e}}_{\text{g}}}\] and \[{{\text{t}}_{{\text{2g}}}}\] energy levels. When an electron goes into \[{{\text{t}}_{{\text{2g}}}}\] which is a lower energy level, it stabilizes the system by an amount of \[\text{-4}{{\text{D}}_{\text{q}}}\] and when an electron goes into \[{{\text{e}}_{\text{g}}}\] level, it destabilizes the system by \[\text{+6}{{\text{D}}_{\text{q}}}\].
Complete answer:
The stability which results due to placing of a transition metal ion into a field that is caused by the set of ligands which surround it, is called Crystal field stabilization energy. In the complex, \[\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]\text{C}{{\text{l}}_{2}}\], Fe forms a +2 ion i.e. \[{{\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]}^{+2}}\].
The electronic configuration of Iron in +2 becomes \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{3}}\].
is a weak field ligand and hence pairing of electrons does not occur. Electrons in \[{{\text{t}}_{\text{2g}}}\] are given as \[\text{t}_{\text{2g}}^{\text{2, 1, 1}}\].
Formula for calculating crystal field stabilization energy is \[\Delta \text{ = no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{t}}_{\text{2g}}}\text{ }\times \text{ (-0}\text{.4) + no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{e}}_{g}}\text{ }\times \text{ (0}\text{.6)}\]
Thus, for this complex - \[\Delta \text{ = 4}{{\Delta }_{0}}\times \text{ (-0}\text{.4) + 2}{{\Delta }_{0}}\text{ }\times \text{ (0}\text{.6)}\]
\[\Delta \text{ = - 0}\text{.4}{{\Delta }_{0}}\]
In the complex, \[{{\text{K}}_{2}}\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]\] charge on Nickel is +2 as it forms \[{{\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]}^{-2}}\].
The electronic configuration of Nickel in +2 is \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{8}}\].
is also a weak field ligand and hence pairing does not occur and the complex formed has tetrahedral geometry. Electrons in \[{{\text{e}}_{\text{g}}}\] are \[\text{e}_{\text{g}}^{\text{2, 2}}\].
Putting these values in the formula we get, \[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.6 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 0}\text{.4 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ = -2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 1}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
So, the correct answer is “Option A”.
Note: Complexes which have a higher number of unpaired electrons are called as high spin complexes and the ones which have low number of unpaired electrons are called as low spin complexes. Most of the time, high spin complexes have weak field ligands and hence their splitting energy has lower value. Conversely, low spin complexes have strong field ligands and hence have higher value of splitting energy.
Complete answer:
The stability which results due to placing of a transition metal ion into a field that is caused by the set of ligands which surround it, is called Crystal field stabilization energy. In the complex, \[\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]\text{C}{{\text{l}}_{2}}\], Fe forms a +2 ion i.e. \[{{\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]}^{+2}}\].
The electronic configuration of Iron in +2 becomes \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{3}}\].
is a weak field ligand and hence pairing of electrons does not occur. Electrons in \[{{\text{t}}_{\text{2g}}}\] are given as \[\text{t}_{\text{2g}}^{\text{2, 1, 1}}\].
Formula for calculating crystal field stabilization energy is \[\Delta \text{ = no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{t}}_{\text{2g}}}\text{ }\times \text{ (-0}\text{.4) + no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{e}}_{g}}\text{ }\times \text{ (0}\text{.6)}\]
Thus, for this complex - \[\Delta \text{ = 4}{{\Delta }_{0}}\times \text{ (-0}\text{.4) + 2}{{\Delta }_{0}}\text{ }\times \text{ (0}\text{.6)}\]
\[\Delta \text{ = - 0}\text{.4}{{\Delta }_{0}}\]
In the complex, \[{{\text{K}}_{2}}\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]\] charge on Nickel is +2 as it forms \[{{\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]}^{-2}}\].
The electronic configuration of Nickel in +2 is \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{8}}\].
is also a weak field ligand and hence pairing does not occur and the complex formed has tetrahedral geometry. Electrons in \[{{\text{e}}_{\text{g}}}\] are \[\text{e}_{\text{g}}^{\text{2, 2}}\].
Putting these values in the formula we get, \[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.6 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 0}\text{.4 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ = -2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 1}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
So, the correct answer is “Option A”.
Note: Complexes which have a higher number of unpaired electrons are called as high spin complexes and the ones which have low number of unpaired electrons are called as low spin complexes. Most of the time, high spin complexes have weak field ligands and hence their splitting energy has lower value. Conversely, low spin complexes have strong field ligands and hence have higher value of splitting energy.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

