The correct statement with regard to $ H_{2}^{+} $ and $ H_{2}^{-} $
(A) Both $ H_{2}^{+} $ and $ H_{2}^{-} $ are equally stable
(B) Both $ H_{2}^{+} $ and $ H_{2}^{-} $ do not exist
(C) $ H_{2}^{-} $ is more stable than $ H_{2}^{+} $
(D) $ H_{2}^{+} $ is more stable than $ H_{2}^{-} $
Answer
278.4k+ views
Hint :The composition of $ H_{2}^{+} $ and $ H_{2}^{-} $ defines the stability order. $ H_{2}^{+} $ does not include any electron in the antibonding molecular orbital. $ H_{2}^{-} $ includes electrons in antibonding molecular orbital.The stability can be easily identified from the electron presence in bonding and antibonding molecular orbital.
Complete Step By Step Answer:
The electron presence in anti-bonding orbital result in repulsion and decrease of stability
The stability order follows the molecular orbital theory
The formula for bonding order can be regarded as follows
Bonding order $ =\dfrac{1}{2} $ (Number of bonding electrons -Number of antibonding electrons)
The number of antibonding electrons in $ H_{2}^{+} $ is 0
The number of antibonding electrons in $ H_{2}^{-} $ is 1
The bonding order of $ H_{2}^{+} $ is $ ~ $ $ =\dfrac{1}{2}(1-0)=0.5 $
The bonding order of $ H_{2}^{-} $ is $ =\dfrac{1}{2}(2-1)=0.5 $
$ H_{2}^{+} $ and $ H_{2}^{-} $ molecule have the same bond order
Presence of anti-bonding electron decreases the stability of the molecule
Therefore, $ H_{2}^{+} $ is more stable than $ H_{2}^{-} $
Both $ H_{2}^{+} $ and $ H_{2}^{-} $ are equally stable is incorrect statement
Both $ H_{2}^{+} $ and $ H_{2}^{-} $ do not exist is incorrect statement
$ H_{2}^{-} $ is more stable than $ H_{2}^{+} $ is incorrect statement
The correct statement is $ H_{2}^{+} $ is more stable than $ H_{2}^{-} $
Due to the electron-electron repulsion in $ H_{2}^{-} $ , the stability of $ H_{2}^{-} $ is low
The configuration of $ H_{2}^{+} $ is $ 1 $ electron in $ 1 $ s bonding orbital
The configuration of $ H_{2}^{-} $ is $ 1 $ electron in $ 1 $ s bonding orbital and $ 1 $ electron in $ 1 $ s antibonding orbital
Even though the bond order of both $ H_{2}^{+} $ and $ H_{2}^{-} $ are same, the stability is different
Therefore, $ H_{2}^{+}>H_{2}^{-} $ .
Note :
The stability order follows the molecular orbital theory. The electron presence in anti-bonding orbital results in repulsion and decrease of stability. Electron-electron repulsion in $ H_{2}^{-} $ , the stability of $ H_{2}^{-} $ is low.
Complete Step By Step Answer:
The electron presence in anti-bonding orbital result in repulsion and decrease of stability
The stability order follows the molecular orbital theory
The formula for bonding order can be regarded as follows
Bonding order $ =\dfrac{1}{2} $ (Number of bonding electrons -Number of antibonding electrons)
The number of antibonding electrons in $ H_{2}^{+} $ is 0
The number of antibonding electrons in $ H_{2}^{-} $ is 1
The bonding order of $ H_{2}^{+} $ is $ ~ $ $ =\dfrac{1}{2}(1-0)=0.5 $
The bonding order of $ H_{2}^{-} $ is $ =\dfrac{1}{2}(2-1)=0.5 $
$ H_{2}^{+} $ and $ H_{2}^{-} $ molecule have the same bond order
Presence of anti-bonding electron decreases the stability of the molecule
Therefore, $ H_{2}^{+} $ is more stable than $ H_{2}^{-} $
Both $ H_{2}^{+} $ and $ H_{2}^{-} $ are equally stable is incorrect statement
Both $ H_{2}^{+} $ and $ H_{2}^{-} $ do not exist is incorrect statement
$ H_{2}^{-} $ is more stable than $ H_{2}^{+} $ is incorrect statement
The correct statement is $ H_{2}^{+} $ is more stable than $ H_{2}^{-} $
Due to the electron-electron repulsion in $ H_{2}^{-} $ , the stability of $ H_{2}^{-} $ is low
The configuration of $ H_{2}^{+} $ is $ 1 $ electron in $ 1 $ s bonding orbital
The configuration of $ H_{2}^{-} $ is $ 1 $ electron in $ 1 $ s bonding orbital and $ 1 $ electron in $ 1 $ s antibonding orbital
Even though the bond order of both $ H_{2}^{+} $ and $ H_{2}^{-} $ are same, the stability is different
Therefore, $ H_{2}^{+}>H_{2}^{-} $ .
Note :
The stability order follows the molecular orbital theory. The electron presence in anti-bonding orbital results in repulsion and decrease of stability. Electron-electron repulsion in $ H_{2}^{-} $ , the stability of $ H_{2}^{-} $ is low.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
