
The coplanar points A, B, C, D are $\left( {2 - x,2,2} \right)$, $\left( {2,2 - y,2} \right)$,$\left( {2,2,2 - z} \right)$ and $\left( {1,1,1} \right)$ respectively, then
A) $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1$
B) $x + y + z = 1$
C) $\dfrac{1}{{1 - x}} + \dfrac{1}{{1 - y}} + \dfrac{1}{{1 - z}} = 1$
D) None of these
Answer
576.6k+ views
Hint: We have 4 points and we can make 3 vectors by taking a common point. If the 4 points are coplanar, the 3 vectors also will be coplanar. We know that volume enclosed by 3 vectors is given by $V = \left| {\vec a.\left( {\vec b \times \vec c} \right)} \right|$. If the vectors are coplanar, their volume enclosed will be zero. Using the relation, we can find the required relation.
Complete step by step solution: We have points A $\left( {2 - x,2,2} \right)$, B $\left( {2,2 - y,2} \right)$,C $\left( {2,2,2 - z} \right)$ and D $\left( {1,1,1} \right)$.
Now we can find the vectors connecting these points. Vector joining 2 points $\overrightarrow P = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k$ and \[\overrightarrow Q = {a_2}\widehat i + {b_2}\widehat j + {c_2}\widehat k\] is given by $\overrightarrow {PQ} = \overrightarrow Q - \overrightarrow P $.
Thus, we get,
\[
\overrightarrow {AB} = \overrightarrow B - \overrightarrow A \\
= 2\widehat i + \left( {2 - y} \right)\widehat j + 2\widehat k - [\left( {2 - x} \right)\widehat i + 2\widehat j + 2\widehat k] \\
\]
On taking like terms together and solving we get,
\[
= \left( {2 - 2 + x} \right)\widehat i + \left( {2 - y - 2} \right)\widehat j + \left( {2 - 2} \right)\widehat k \\
= x\widehat i - y\widehat j \\
\]
Similarly,for vector AC, we get,
\[
\overrightarrow {AC} = \overrightarrow C - \overrightarrow A \\
= 2\widehat i + 2\widehat j + \left( {2 - z} \right)\widehat k - [\left( {2 - x} \right)\widehat i + 2\widehat j + 2\widehat k] \\
\]
On taking like terms together and solving we get,
\[
= \left( {2 - 2 + x} \right)\widehat i + \left( {2 - 2} \right)\widehat j + \left( {2 - z - 2} \right)\widehat k \\
= x\widehat i - z\widehat k \\
\]
And for vector AD,
\[
\overrightarrow {AD} = \overrightarrow D - \overrightarrow A \\
= \widehat i + \widehat j + \widehat k - [\left( {2 - x} \right)\widehat i + 2\widehat j + 2\widehat {k]} \\
\]
On taking like terms together and solving we get,
\[
= \left( { - 1 + x} \right)\widehat i + \left( {1 - 2} \right)\widehat j + \left( {1 - 2} \right)\widehat k \\
= \left( {x - 1} \right)\widehat i - \widehat j - \widehat k \\
\]
Now we have vectors, \[\overrightarrow {AB} = x\widehat i - y\widehat j\]\[\overrightarrow {AC} = x\widehat i - z\widehat k\]and \[\overrightarrow {AD} = \left( {x - 1} \right)\widehat i - \widehat j - \widehat k\]. To get the volume enclosed by the vectors, we can find the box product.
\[
\Rightarrow V = \left| {\vec a.\left( {\vec b \times \vec c} \right)} \right| \\
= \left| {\overrightarrow {AB} .\left( {\overrightarrow {AC} \times \overrightarrow {AD} } \right)} \right| \\
= \left| {\begin{array}{*{20}{c}}
x&{ - y}&0 \\
x&0&{ - z} \\
{x - 1}&{ - 1}&{ - 1}
\end{array}} \right| \\
= x\left( {0 - z} \right) + y\left( { - x + zx - z} \right) + 0 \\
\]
$ \Rightarrow V = - xz - yz + xyz - zy$
If the points are coplanar, the vectors also will be coplanar. Then the volume will be zero.
$ \Rightarrow V = - xz - yz + xyz - zy = 0$
On rearranging, we get
$yz + xz + xy = xyz$
Dividing throughout with $xyz$ , we get,
$\dfrac{{yz}}{{xyz}} + \dfrac{{xz}}{{xyz}} + \dfrac{{xy}}{{xyz}} = 1$
$ \Rightarrow \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1$
Therefore, the required relation is $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1$
So, the correct answer is option A.
Note: Coplanar points are points that lie on the same plane. The vectors joining coplanar points will be coplanar vectors. Box product or scalar triple product of three vectors $\overrightarrow A = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k$,\[\overrightarrow B = {a_2}\widehat i + {b_2}\widehat j + {c_2}\widehat k\]and \[\overrightarrow C = {a_3}\widehat i + {b_3}\widehat j + {c_3}\widehat k\]is defined as the dot product of one vector with the cross product of the other two vectors. It is given by,
$\overrightarrow A .\left( {\overrightarrow B \times \overrightarrow C } \right) = \det \left[ {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right]$
The modulus of scalar triple product gives the volume of the parallelepiped formed by the three vectors. If the 3 vectors lie on the same plane, the volume of the parallelepiped will be zero. So, for 3 coplanar vectors their box product is zero. We don’t have any condition for directly proving 4 points are coplanar, we need to find three vectors from the four points and then prove its box product is zero. While forming the vectors, we must make sure that all the given points must be included. For that we usually keep the initial point of the vector the same and the vector from this point to the other 3 points are taken.
Complete step by step solution: We have points A $\left( {2 - x,2,2} \right)$, B $\left( {2,2 - y,2} \right)$,C $\left( {2,2,2 - z} \right)$ and D $\left( {1,1,1} \right)$.
Now we can find the vectors connecting these points. Vector joining 2 points $\overrightarrow P = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k$ and \[\overrightarrow Q = {a_2}\widehat i + {b_2}\widehat j + {c_2}\widehat k\] is given by $\overrightarrow {PQ} = \overrightarrow Q - \overrightarrow P $.
Thus, we get,
\[
\overrightarrow {AB} = \overrightarrow B - \overrightarrow A \\
= 2\widehat i + \left( {2 - y} \right)\widehat j + 2\widehat k - [\left( {2 - x} \right)\widehat i + 2\widehat j + 2\widehat k] \\
\]
On taking like terms together and solving we get,
\[
= \left( {2 - 2 + x} \right)\widehat i + \left( {2 - y - 2} \right)\widehat j + \left( {2 - 2} \right)\widehat k \\
= x\widehat i - y\widehat j \\
\]
Similarly,for vector AC, we get,
\[
\overrightarrow {AC} = \overrightarrow C - \overrightarrow A \\
= 2\widehat i + 2\widehat j + \left( {2 - z} \right)\widehat k - [\left( {2 - x} \right)\widehat i + 2\widehat j + 2\widehat k] \\
\]
On taking like terms together and solving we get,
\[
= \left( {2 - 2 + x} \right)\widehat i + \left( {2 - 2} \right)\widehat j + \left( {2 - z - 2} \right)\widehat k \\
= x\widehat i - z\widehat k \\
\]
And for vector AD,
\[
\overrightarrow {AD} = \overrightarrow D - \overrightarrow A \\
= \widehat i + \widehat j + \widehat k - [\left( {2 - x} \right)\widehat i + 2\widehat j + 2\widehat {k]} \\
\]
On taking like terms together and solving we get,
\[
= \left( { - 1 + x} \right)\widehat i + \left( {1 - 2} \right)\widehat j + \left( {1 - 2} \right)\widehat k \\
= \left( {x - 1} \right)\widehat i - \widehat j - \widehat k \\
\]
Now we have vectors, \[\overrightarrow {AB} = x\widehat i - y\widehat j\]\[\overrightarrow {AC} = x\widehat i - z\widehat k\]and \[\overrightarrow {AD} = \left( {x - 1} \right)\widehat i - \widehat j - \widehat k\]. To get the volume enclosed by the vectors, we can find the box product.
\[
\Rightarrow V = \left| {\vec a.\left( {\vec b \times \vec c} \right)} \right| \\
= \left| {\overrightarrow {AB} .\left( {\overrightarrow {AC} \times \overrightarrow {AD} } \right)} \right| \\
= \left| {\begin{array}{*{20}{c}}
x&{ - y}&0 \\
x&0&{ - z} \\
{x - 1}&{ - 1}&{ - 1}
\end{array}} \right| \\
= x\left( {0 - z} \right) + y\left( { - x + zx - z} \right) + 0 \\
\]
$ \Rightarrow V = - xz - yz + xyz - zy$
If the points are coplanar, the vectors also will be coplanar. Then the volume will be zero.
$ \Rightarrow V = - xz - yz + xyz - zy = 0$
On rearranging, we get
$yz + xz + xy = xyz$
Dividing throughout with $xyz$ , we get,
$\dfrac{{yz}}{{xyz}} + \dfrac{{xz}}{{xyz}} + \dfrac{{xy}}{{xyz}} = 1$
$ \Rightarrow \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1$
Therefore, the required relation is $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1$
So, the correct answer is option A.
Note: Coplanar points are points that lie on the same plane. The vectors joining coplanar points will be coplanar vectors. Box product or scalar triple product of three vectors $\overrightarrow A = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k$,\[\overrightarrow B = {a_2}\widehat i + {b_2}\widehat j + {c_2}\widehat k\]and \[\overrightarrow C = {a_3}\widehat i + {b_3}\widehat j + {c_3}\widehat k\]is defined as the dot product of one vector with the cross product of the other two vectors. It is given by,
$\overrightarrow A .\left( {\overrightarrow B \times \overrightarrow C } \right) = \det \left[ {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right]$
The modulus of scalar triple product gives the volume of the parallelepiped formed by the three vectors. If the 3 vectors lie on the same plane, the volume of the parallelepiped will be zero. So, for 3 coplanar vectors their box product is zero. We don’t have any condition for directly proving 4 points are coplanar, we need to find three vectors from the four points and then prove its box product is zero. While forming the vectors, we must make sure that all the given points must be included. For that we usually keep the initial point of the vector the same and the vector from this point to the other 3 points are taken.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

