
The coordinate of the point which divides the line segment joining points $ A\left( {0,0} \right) $ and $ B\left( {9,12} \right) $ in the ratio $ 1:2 $ are:
A. $ \left( { - 3,4} \right) $
B. $ \left( {3,4} \right) $
C. $ \left( {3, - 4} \right) $
D.None of these
Answer
550.8k+ views
Hint: Use the section formula to find the coordinates of the point that divides the line segments joining the two points in the given ratio or in other sense the point divides the line segment into two parts one with double the distance of the other.
Complete step-by-step answer:
The end points of the line segment are $ A\left( {0,0} \right) $ and $ B\left( {9,12} \right) $ , the ratio is $ 1:2 $ .
The formula for the coordinates of the point that divide the line segment joining the points $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the $ m:n $ ratio is equal to $ \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $ .
As per given in the question the endpoints of the line segment are $ A\left( {0,0} \right) $ and $ B\left( {9,12} \right) $ and the given ratio is $ 1:2 $ .
So, the value of $ m $ and $ n $ is equal to $ 1 $ and $ 2 $ respectively.
Substitute the end points and ratio in the formula for coordinates of the point:
$
\left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)
= \left( {\dfrac{{1 \times 9 + 2 \times 0}}{{1 + 2}},\dfrac{{1 \times 12 + 2 \times 0}}{{1 + 2}}} \right) \\
= \left( {\dfrac{9}{3},\dfrac{{12}}{3}} \right) \\
= \left( {3,4} \right) \;
$
So, the coordinates of the point which divides the line segment joining points $ A\left( {0,0} \right) $ and $ B\left( {9,12} \right) $ in the ratio $ 1:2 $ are $ \left( {3,4} \right) $ .
One can easily verify that this point cuts the line into two parts such that the length of one is double the other.
So, the correct answer is “Option B”.
Note: The formula for the coordinates of the point that divide the line segment joining the points $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the $ m:n $ ratio is equal to $ \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $ . As this line passes through origin so this can be found by using the equation of the line too.
Complete step-by-step answer:
The end points of the line segment are $ A\left( {0,0} \right) $ and $ B\left( {9,12} \right) $ , the ratio is $ 1:2 $ .
The formula for the coordinates of the point that divide the line segment joining the points $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the $ m:n $ ratio is equal to $ \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $ .
As per given in the question the endpoints of the line segment are $ A\left( {0,0} \right) $ and $ B\left( {9,12} \right) $ and the given ratio is $ 1:2 $ .
So, the value of $ m $ and $ n $ is equal to $ 1 $ and $ 2 $ respectively.
Substitute the end points and ratio in the formula for coordinates of the point:
$
\left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)
= \left( {\dfrac{{1 \times 9 + 2 \times 0}}{{1 + 2}},\dfrac{{1 \times 12 + 2 \times 0}}{{1 + 2}}} \right) \\
= \left( {\dfrac{9}{3},\dfrac{{12}}{3}} \right) \\
= \left( {3,4} \right) \;
$
So, the coordinates of the point which divides the line segment joining points $ A\left( {0,0} \right) $ and $ B\left( {9,12} \right) $ in the ratio $ 1:2 $ are $ \left( {3,4} \right) $ .
One can easily verify that this point cuts the line into two parts such that the length of one is double the other.
So, the correct answer is “Option B”.
Note: The formula for the coordinates of the point that divide the line segment joining the points $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the $ m:n $ ratio is equal to $ \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $ . As this line passes through origin so this can be found by using the equation of the line too.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

