The constant c of Lagrange's theorem for \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] in \[\left[ 0,\dfrac{1}{2} \right]\] is
\[\begin{align}
& A.\dfrac{1}{2} \\
& B.\dfrac{6+\sqrt{21}}{6} \\
& C.\dfrac{6-\sqrt{21}}{6} \\
& D.\dfrac{\sqrt{21}-6}{6} \\
\end{align}\]
Answer
335.1k+ views
Hint: To solve the question given above, we will use the concept of Lagrange's mean value theorem (LMVT). So, first we will find out what is LMVT and then using it, we will find the value of \[f'\left( c \right)\] as shown below:
\[f'\left( c \right)=\dfrac{f\left( b \right)-f\left( a \right)}{b-a}\]
Then, we will find the derivative of the function \[\left( f'\left( x \right) \right)\] and put c in place of it. We will solve the quadratic in c with the help of the quadratic formula.
Complete step by step answer:
Before we solve the question, we must know what Lagrange’s mean value theorem (LMVT) is. Lagrange's mean value theorem (LMVT) states that if a function \[f\left( x \right)\] is continuous on closed interval \[\left[ a,b \right]\] and differentiable on the open interval \[\left( a,b \right)\] then there is at least one point \[x=c\] on this interval, such that:
\[f'\left( c \right)=\dfrac{f\left( b \right)-f\left( a \right)}{b-a}\]
In our case, \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] which is continuous and differentiable in the interval \[\left[ 0,\dfrac{1}{2} \right]\] .Now, we will calculate \[f'\left( c \right)\] first with the help of LMVT. In our case, \[a=0\,\,\text{and }b=\dfrac{1}{2}\] Thus, we have:
\[\begin{align}
& f'\left( c \right)=\dfrac{f\left( \dfrac{1}{2} \right)-f\left( 0 \right)}{\dfrac{1}{2}-0} \\
& \Rightarrow f'\left( c \right)=\dfrac{f\left( \dfrac{1}{2} \right)-f\left( 0 \right)}{\left( \dfrac{1}{2} \right)} \\
& \Rightarrow f'\left( c \right)=2\left( f\left( \dfrac{1}{2} \right)-f\left( 0 \right) \right)......................(i) \\
\end{align}\]
Now, we will calculate the values of \[f\left( \dfrac{1}{2} \right)\text{ and }f\left( 0 \right)\] Thus, we have:
\[\begin{align}
& f\left( \dfrac{1}{2} \right)=\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2}-1 \right)\left( \dfrac{1}{2}-2 \right) \\
& \Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{1}{2}\times \left( \dfrac{-1}{2} \right)\left( \dfrac{-3}{2} \right) \\
& \Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{3}{8}\,.........................(ii) \\
\end{align}\]
\[\begin{align}
& f\left( 0 \right)=0\left( 0-1 \right)\left( 0-2 \right) \\
& f\left( 0 \right)=0\left( -1 \right)\left( -2 \right) \\
& f\left( 0 \right)=0\,.......................(iii) \\
\end{align}\]
Now, we will put the values of \[f\left( \dfrac{1}{2} \right)\text{ and }f\left( 0 \right)\] from (ii) and (iii) to (i). Thus, we will get:
\[\begin{align}
& \Rightarrow f'\left( c \right)=2\left( \dfrac{3}{8}-0 \right) \\
& \Rightarrow f'\left( c \right)=2\left( \dfrac{3}{8} \right) \\
& \Rightarrow f'\left( c \right)=\dfrac{3}{4}\,........................(iv) \\
\end{align}\]
Now, we will find \[f'\left( x \right)\] i.e. the derivative of f(x). For doing this, we will expand f(x) first. Thus, we will get:
\[\begin{align}
& f\left( x \right)=x\left( x-1 \right)\left( x-2 \right) \\
& \Rightarrow f\left( x \right)=x\left( {{x}^{2}}-x-2x+2 \right) \\
& \Rightarrow f\left( x \right)=x\left( {{x}^{2}}-3x+2 \right) \\
& \Rightarrow f\left( x \right)={{x}^{3}}-3{{x}^{2}}+2x \\
\end{align}\]
Now \[f'\left( x \right)\] will be:
\[\begin{align}
& f'\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{x}^{3}}-3{{x}^{2}}+2x \right] \\
& f'\left( x \right)=3{{x}^{2}}-6x+2 \\
\end{align}\]
Thus, the value of \[f'\left( x \right)\] will be:
\[f'\left( c \right)=3{{c}^{2}}-6c+2\,.......................(v)\]
From (iv) and (v), we have:
\[\begin{align}
& \Rightarrow 3{{c}^{2}}-6c+2\,=\dfrac{3}{4} \\
& \Rightarrow 3{{c}^{2}}-6c+2-\dfrac{3}{4}\,=0 \\
& \Rightarrow 3{{c}^{2}}-6c+\dfrac{5}{4}\,=0 \\
& \Rightarrow 12{{c}^{2}}-24c+5\,=0 \\
\end{align}\]
Now, the above equation is a quadratic in c. So, we will find the value of c using the quadratic formula. If the quadratic equation given is \[a{{x}^{2}}+bx+c=0\] then we have:
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
Thus, we have:
\[\begin{align}
& c=\dfrac{-\left( -24 \right)\pm \sqrt{{{\left( -24 \right)}^{2}}-4\left( 12 \right)\left( 5 \right)}}{2\left( 12 \right)} \\
& \Rightarrow c=\dfrac{24\pm \sqrt{576-240}}{24} \\
& \Rightarrow c=\dfrac{24\pm \sqrt{336}}{24} \\
& \Rightarrow c=\dfrac{24\pm 4\sqrt{21}}{24} \\
& \Rightarrow c=\dfrac{6\pm \sqrt{21}}{6} \\
\end{align}\]
Now, either \[c=\dfrac{6+\sqrt{21}}{6}\] or \[c=\dfrac{6-\sqrt{21}}{6}\] or both:
If \[c=\dfrac{6+\sqrt{21}}{6}\] then \[c=\dfrac{6+4.58}{6}\]
\[\begin{align}
& \Rightarrow c=\dfrac{10.58}{6} \\
& \Rightarrow c=1.76 \\
\end{align}\]
If \[c=\dfrac{6-\sqrt{21}}{6}\] then \[c=\dfrac{6-4.58}{6}\]
\[\begin{align}
& \Rightarrow c=\dfrac{1.42}{6} \\
& \Rightarrow c=0.23 \\
\end{align}\]
So, the value of \[c=\dfrac{6-\sqrt{21}}{6}\] because the interval of c is \[\left[ 0,\dfrac{1}{2} \right]\]
So, the correct answer is “Option C”.
Note: We have not checked whether \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] is continuous or differentiable in \[\left[ 0,\dfrac{1}{2} \right]\] This is because f(x) is a cubic polynomial and every cubic polynomial is continuous and differentiable in the \[x\in \left( -\alpha ,\alpha \right)\] If we want, we can check this by applying the limit on f(x).
\[f'\left( c \right)=\dfrac{f\left( b \right)-f\left( a \right)}{b-a}\]
Then, we will find the derivative of the function \[\left( f'\left( x \right) \right)\] and put c in place of it. We will solve the quadratic in c with the help of the quadratic formula.
Complete step by step answer:
Before we solve the question, we must know what Lagrange’s mean value theorem (LMVT) is. Lagrange's mean value theorem (LMVT) states that if a function \[f\left( x \right)\] is continuous on closed interval \[\left[ a,b \right]\] and differentiable on the open interval \[\left( a,b \right)\] then there is at least one point \[x=c\] on this interval, such that:
\[f'\left( c \right)=\dfrac{f\left( b \right)-f\left( a \right)}{b-a}\]
In our case, \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] which is continuous and differentiable in the interval \[\left[ 0,\dfrac{1}{2} \right]\] .Now, we will calculate \[f'\left( c \right)\] first with the help of LMVT. In our case, \[a=0\,\,\text{and }b=\dfrac{1}{2}\] Thus, we have:
\[\begin{align}
& f'\left( c \right)=\dfrac{f\left( \dfrac{1}{2} \right)-f\left( 0 \right)}{\dfrac{1}{2}-0} \\
& \Rightarrow f'\left( c \right)=\dfrac{f\left( \dfrac{1}{2} \right)-f\left( 0 \right)}{\left( \dfrac{1}{2} \right)} \\
& \Rightarrow f'\left( c \right)=2\left( f\left( \dfrac{1}{2} \right)-f\left( 0 \right) \right)......................(i) \\
\end{align}\]
Now, we will calculate the values of \[f\left( \dfrac{1}{2} \right)\text{ and }f\left( 0 \right)\] Thus, we have:
\[\begin{align}
& f\left( \dfrac{1}{2} \right)=\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2}-1 \right)\left( \dfrac{1}{2}-2 \right) \\
& \Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{1}{2}\times \left( \dfrac{-1}{2} \right)\left( \dfrac{-3}{2} \right) \\
& \Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{3}{8}\,.........................(ii) \\
\end{align}\]
\[\begin{align}
& f\left( 0 \right)=0\left( 0-1 \right)\left( 0-2 \right) \\
& f\left( 0 \right)=0\left( -1 \right)\left( -2 \right) \\
& f\left( 0 \right)=0\,.......................(iii) \\
\end{align}\]
Now, we will put the values of \[f\left( \dfrac{1}{2} \right)\text{ and }f\left( 0 \right)\] from (ii) and (iii) to (i). Thus, we will get:
\[\begin{align}
& \Rightarrow f'\left( c \right)=2\left( \dfrac{3}{8}-0 \right) \\
& \Rightarrow f'\left( c \right)=2\left( \dfrac{3}{8} \right) \\
& \Rightarrow f'\left( c \right)=\dfrac{3}{4}\,........................(iv) \\
\end{align}\]
Now, we will find \[f'\left( x \right)\] i.e. the derivative of f(x). For doing this, we will expand f(x) first. Thus, we will get:
\[\begin{align}
& f\left( x \right)=x\left( x-1 \right)\left( x-2 \right) \\
& \Rightarrow f\left( x \right)=x\left( {{x}^{2}}-x-2x+2 \right) \\
& \Rightarrow f\left( x \right)=x\left( {{x}^{2}}-3x+2 \right) \\
& \Rightarrow f\left( x \right)={{x}^{3}}-3{{x}^{2}}+2x \\
\end{align}\]
Now \[f'\left( x \right)\] will be:
\[\begin{align}
& f'\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{x}^{3}}-3{{x}^{2}}+2x \right] \\
& f'\left( x \right)=3{{x}^{2}}-6x+2 \\
\end{align}\]
Thus, the value of \[f'\left( x \right)\] will be:
\[f'\left( c \right)=3{{c}^{2}}-6c+2\,.......................(v)\]
From (iv) and (v), we have:
\[\begin{align}
& \Rightarrow 3{{c}^{2}}-6c+2\,=\dfrac{3}{4} \\
& \Rightarrow 3{{c}^{2}}-6c+2-\dfrac{3}{4}\,=0 \\
& \Rightarrow 3{{c}^{2}}-6c+\dfrac{5}{4}\,=0 \\
& \Rightarrow 12{{c}^{2}}-24c+5\,=0 \\
\end{align}\]
Now, the above equation is a quadratic in c. So, we will find the value of c using the quadratic formula. If the quadratic equation given is \[a{{x}^{2}}+bx+c=0\] then we have:
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
Thus, we have:
\[\begin{align}
& c=\dfrac{-\left( -24 \right)\pm \sqrt{{{\left( -24 \right)}^{2}}-4\left( 12 \right)\left( 5 \right)}}{2\left( 12 \right)} \\
& \Rightarrow c=\dfrac{24\pm \sqrt{576-240}}{24} \\
& \Rightarrow c=\dfrac{24\pm \sqrt{336}}{24} \\
& \Rightarrow c=\dfrac{24\pm 4\sqrt{21}}{24} \\
& \Rightarrow c=\dfrac{6\pm \sqrt{21}}{6} \\
\end{align}\]
Now, either \[c=\dfrac{6+\sqrt{21}}{6}\] or \[c=\dfrac{6-\sqrt{21}}{6}\] or both:
If \[c=\dfrac{6+\sqrt{21}}{6}\] then \[c=\dfrac{6+4.58}{6}\]
\[\begin{align}
& \Rightarrow c=\dfrac{10.58}{6} \\
& \Rightarrow c=1.76 \\
\end{align}\]
If \[c=\dfrac{6-\sqrt{21}}{6}\] then \[c=\dfrac{6-4.58}{6}\]
\[\begin{align}
& \Rightarrow c=\dfrac{1.42}{6} \\
& \Rightarrow c=0.23 \\
\end{align}\]
So, the value of \[c=\dfrac{6-\sqrt{21}}{6}\] because the interval of c is \[\left[ 0,\dfrac{1}{2} \right]\]
So, the correct answer is “Option C”.
Note: We have not checked whether \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] is continuous or differentiable in \[\left[ 0,\dfrac{1}{2} \right]\] This is because f(x) is a cubic polynomial and every cubic polynomial is continuous and differentiable in the \[x\in \left( -\alpha ,\alpha \right)\] If we want, we can check this by applying the limit on f(x).
Last updated date: 25th Sep 2023
•
Total views: 335.1k
•
Views today: 9.35k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
