The constant c of Lagrange's theorem for \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] in \[\left[ 0,\dfrac{1}{2} \right]\] is
\[\begin{align}
& A.\dfrac{1}{2} \\
& B.\dfrac{6+\sqrt{21}}{6} \\
& C.\dfrac{6-\sqrt{21}}{6} \\
& D.\dfrac{\sqrt{21}-6}{6} \\
\end{align}\]
Answer
Verified
478.8k+ views
Hint: To solve the question given above, we will use the concept of Lagrange's mean value theorem (LMVT). So, first we will find out what is LMVT and then using it, we will find the value of \[f'\left( c \right)\] as shown below:
\[f'\left( c \right)=\dfrac{f\left( b \right)-f\left( a \right)}{b-a}\]
Then, we will find the derivative of the function \[\left( f'\left( x \right) \right)\] and put c in place of it. We will solve the quadratic in c with the help of the quadratic formula.
Complete step by step answer:
Before we solve the question, we must know what Lagrange’s mean value theorem (LMVT) is. Lagrange's mean value theorem (LMVT) states that if a function \[f\left( x \right)\] is continuous on closed interval \[\left[ a,b \right]\] and differentiable on the open interval \[\left( a,b \right)\] then there is at least one point \[x=c\] on this interval, such that:
\[f'\left( c \right)=\dfrac{f\left( b \right)-f\left( a \right)}{b-a}\]
In our case, \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] which is continuous and differentiable in the interval \[\left[ 0,\dfrac{1}{2} \right]\] .Now, we will calculate \[f'\left( c \right)\] first with the help of LMVT. In our case, \[a=0\,\,\text{and }b=\dfrac{1}{2}\] Thus, we have:
\[\begin{align}
& f'\left( c \right)=\dfrac{f\left( \dfrac{1}{2} \right)-f\left( 0 \right)}{\dfrac{1}{2}-0} \\
& \Rightarrow f'\left( c \right)=\dfrac{f\left( \dfrac{1}{2} \right)-f\left( 0 \right)}{\left( \dfrac{1}{2} \right)} \\
& \Rightarrow f'\left( c \right)=2\left( f\left( \dfrac{1}{2} \right)-f\left( 0 \right) \right)......................(i) \\
\end{align}\]
Now, we will calculate the values of \[f\left( \dfrac{1}{2} \right)\text{ and }f\left( 0 \right)\] Thus, we have:
\[\begin{align}
& f\left( \dfrac{1}{2} \right)=\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2}-1 \right)\left( \dfrac{1}{2}-2 \right) \\
& \Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{1}{2}\times \left( \dfrac{-1}{2} \right)\left( \dfrac{-3}{2} \right) \\
& \Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{3}{8}\,.........................(ii) \\
\end{align}\]
\[\begin{align}
& f\left( 0 \right)=0\left( 0-1 \right)\left( 0-2 \right) \\
& f\left( 0 \right)=0\left( -1 \right)\left( -2 \right) \\
& f\left( 0 \right)=0\,.......................(iii) \\
\end{align}\]
Now, we will put the values of \[f\left( \dfrac{1}{2} \right)\text{ and }f\left( 0 \right)\] from (ii) and (iii) to (i). Thus, we will get:
\[\begin{align}
& \Rightarrow f'\left( c \right)=2\left( \dfrac{3}{8}-0 \right) \\
& \Rightarrow f'\left( c \right)=2\left( \dfrac{3}{8} \right) \\
& \Rightarrow f'\left( c \right)=\dfrac{3}{4}\,........................(iv) \\
\end{align}\]
Now, we will find \[f'\left( x \right)\] i.e. the derivative of f(x). For doing this, we will expand f(x) first. Thus, we will get:
\[\begin{align}
& f\left( x \right)=x\left( x-1 \right)\left( x-2 \right) \\
& \Rightarrow f\left( x \right)=x\left( {{x}^{2}}-x-2x+2 \right) \\
& \Rightarrow f\left( x \right)=x\left( {{x}^{2}}-3x+2 \right) \\
& \Rightarrow f\left( x \right)={{x}^{3}}-3{{x}^{2}}+2x \\
\end{align}\]
Now \[f'\left( x \right)\] will be:
\[\begin{align}
& f'\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{x}^{3}}-3{{x}^{2}}+2x \right] \\
& f'\left( x \right)=3{{x}^{2}}-6x+2 \\
\end{align}\]
Thus, the value of \[f'\left( x \right)\] will be:
\[f'\left( c \right)=3{{c}^{2}}-6c+2\,.......................(v)\]
From (iv) and (v), we have:
\[\begin{align}
& \Rightarrow 3{{c}^{2}}-6c+2\,=\dfrac{3}{4} \\
& \Rightarrow 3{{c}^{2}}-6c+2-\dfrac{3}{4}\,=0 \\
& \Rightarrow 3{{c}^{2}}-6c+\dfrac{5}{4}\,=0 \\
& \Rightarrow 12{{c}^{2}}-24c+5\,=0 \\
\end{align}\]
Now, the above equation is a quadratic in c. So, we will find the value of c using the quadratic formula. If the quadratic equation given is \[a{{x}^{2}}+bx+c=0\] then we have:
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
Thus, we have:
\[\begin{align}
& c=\dfrac{-\left( -24 \right)\pm \sqrt{{{\left( -24 \right)}^{2}}-4\left( 12 \right)\left( 5 \right)}}{2\left( 12 \right)} \\
& \Rightarrow c=\dfrac{24\pm \sqrt{576-240}}{24} \\
& \Rightarrow c=\dfrac{24\pm \sqrt{336}}{24} \\
& \Rightarrow c=\dfrac{24\pm 4\sqrt{21}}{24} \\
& \Rightarrow c=\dfrac{6\pm \sqrt{21}}{6} \\
\end{align}\]
Now, either \[c=\dfrac{6+\sqrt{21}}{6}\] or \[c=\dfrac{6-\sqrt{21}}{6}\] or both:
If \[c=\dfrac{6+\sqrt{21}}{6}\] then \[c=\dfrac{6+4.58}{6}\]
\[\begin{align}
& \Rightarrow c=\dfrac{10.58}{6} \\
& \Rightarrow c=1.76 \\
\end{align}\]
If \[c=\dfrac{6-\sqrt{21}}{6}\] then \[c=\dfrac{6-4.58}{6}\]
\[\begin{align}
& \Rightarrow c=\dfrac{1.42}{6} \\
& \Rightarrow c=0.23 \\
\end{align}\]
So, the value of \[c=\dfrac{6-\sqrt{21}}{6}\] because the interval of c is \[\left[ 0,\dfrac{1}{2} \right]\]
So, the correct answer is “Option C”.
Note: We have not checked whether \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] is continuous or differentiable in \[\left[ 0,\dfrac{1}{2} \right]\] This is because f(x) is a cubic polynomial and every cubic polynomial is continuous and differentiable in the \[x\in \left( -\alpha ,\alpha \right)\] If we want, we can check this by applying the limit on f(x).
\[f'\left( c \right)=\dfrac{f\left( b \right)-f\left( a \right)}{b-a}\]
Then, we will find the derivative of the function \[\left( f'\left( x \right) \right)\] and put c in place of it. We will solve the quadratic in c with the help of the quadratic formula.
Complete step by step answer:
Before we solve the question, we must know what Lagrange’s mean value theorem (LMVT) is. Lagrange's mean value theorem (LMVT) states that if a function \[f\left( x \right)\] is continuous on closed interval \[\left[ a,b \right]\] and differentiable on the open interval \[\left( a,b \right)\] then there is at least one point \[x=c\] on this interval, such that:
\[f'\left( c \right)=\dfrac{f\left( b \right)-f\left( a \right)}{b-a}\]
In our case, \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] which is continuous and differentiable in the interval \[\left[ 0,\dfrac{1}{2} \right]\] .Now, we will calculate \[f'\left( c \right)\] first with the help of LMVT. In our case, \[a=0\,\,\text{and }b=\dfrac{1}{2}\] Thus, we have:
\[\begin{align}
& f'\left( c \right)=\dfrac{f\left( \dfrac{1}{2} \right)-f\left( 0 \right)}{\dfrac{1}{2}-0} \\
& \Rightarrow f'\left( c \right)=\dfrac{f\left( \dfrac{1}{2} \right)-f\left( 0 \right)}{\left( \dfrac{1}{2} \right)} \\
& \Rightarrow f'\left( c \right)=2\left( f\left( \dfrac{1}{2} \right)-f\left( 0 \right) \right)......................(i) \\
\end{align}\]
Now, we will calculate the values of \[f\left( \dfrac{1}{2} \right)\text{ and }f\left( 0 \right)\] Thus, we have:
\[\begin{align}
& f\left( \dfrac{1}{2} \right)=\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2}-1 \right)\left( \dfrac{1}{2}-2 \right) \\
& \Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{1}{2}\times \left( \dfrac{-1}{2} \right)\left( \dfrac{-3}{2} \right) \\
& \Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{3}{8}\,.........................(ii) \\
\end{align}\]
\[\begin{align}
& f\left( 0 \right)=0\left( 0-1 \right)\left( 0-2 \right) \\
& f\left( 0 \right)=0\left( -1 \right)\left( -2 \right) \\
& f\left( 0 \right)=0\,.......................(iii) \\
\end{align}\]
Now, we will put the values of \[f\left( \dfrac{1}{2} \right)\text{ and }f\left( 0 \right)\] from (ii) and (iii) to (i). Thus, we will get:
\[\begin{align}
& \Rightarrow f'\left( c \right)=2\left( \dfrac{3}{8}-0 \right) \\
& \Rightarrow f'\left( c \right)=2\left( \dfrac{3}{8} \right) \\
& \Rightarrow f'\left( c \right)=\dfrac{3}{4}\,........................(iv) \\
\end{align}\]
Now, we will find \[f'\left( x \right)\] i.e. the derivative of f(x). For doing this, we will expand f(x) first. Thus, we will get:
\[\begin{align}
& f\left( x \right)=x\left( x-1 \right)\left( x-2 \right) \\
& \Rightarrow f\left( x \right)=x\left( {{x}^{2}}-x-2x+2 \right) \\
& \Rightarrow f\left( x \right)=x\left( {{x}^{2}}-3x+2 \right) \\
& \Rightarrow f\left( x \right)={{x}^{3}}-3{{x}^{2}}+2x \\
\end{align}\]
Now \[f'\left( x \right)\] will be:
\[\begin{align}
& f'\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{x}^{3}}-3{{x}^{2}}+2x \right] \\
& f'\left( x \right)=3{{x}^{2}}-6x+2 \\
\end{align}\]
Thus, the value of \[f'\left( x \right)\] will be:
\[f'\left( c \right)=3{{c}^{2}}-6c+2\,.......................(v)\]
From (iv) and (v), we have:
\[\begin{align}
& \Rightarrow 3{{c}^{2}}-6c+2\,=\dfrac{3}{4} \\
& \Rightarrow 3{{c}^{2}}-6c+2-\dfrac{3}{4}\,=0 \\
& \Rightarrow 3{{c}^{2}}-6c+\dfrac{5}{4}\,=0 \\
& \Rightarrow 12{{c}^{2}}-24c+5\,=0 \\
\end{align}\]
Now, the above equation is a quadratic in c. So, we will find the value of c using the quadratic formula. If the quadratic equation given is \[a{{x}^{2}}+bx+c=0\] then we have:
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
Thus, we have:
\[\begin{align}
& c=\dfrac{-\left( -24 \right)\pm \sqrt{{{\left( -24 \right)}^{2}}-4\left( 12 \right)\left( 5 \right)}}{2\left( 12 \right)} \\
& \Rightarrow c=\dfrac{24\pm \sqrt{576-240}}{24} \\
& \Rightarrow c=\dfrac{24\pm \sqrt{336}}{24} \\
& \Rightarrow c=\dfrac{24\pm 4\sqrt{21}}{24} \\
& \Rightarrow c=\dfrac{6\pm \sqrt{21}}{6} \\
\end{align}\]
Now, either \[c=\dfrac{6+\sqrt{21}}{6}\] or \[c=\dfrac{6-\sqrt{21}}{6}\] or both:
If \[c=\dfrac{6+\sqrt{21}}{6}\] then \[c=\dfrac{6+4.58}{6}\]
\[\begin{align}
& \Rightarrow c=\dfrac{10.58}{6} \\
& \Rightarrow c=1.76 \\
\end{align}\]
If \[c=\dfrac{6-\sqrt{21}}{6}\] then \[c=\dfrac{6-4.58}{6}\]
\[\begin{align}
& \Rightarrow c=\dfrac{1.42}{6} \\
& \Rightarrow c=0.23 \\
\end{align}\]
So, the value of \[c=\dfrac{6-\sqrt{21}}{6}\] because the interval of c is \[\left[ 0,\dfrac{1}{2} \right]\]
So, the correct answer is “Option C”.
Note: We have not checked whether \[f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)\] is continuous or differentiable in \[\left[ 0,\dfrac{1}{2} \right]\] This is because f(x) is a cubic polynomial and every cubic polynomial is continuous and differentiable in the \[x\in \left( -\alpha ,\alpha \right)\] If we want, we can check this by applying the limit on f(x).
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE