Answer
Verified
492.9k+ views
Hint: To solve the question, we have to apply the properties of tangent which states that tangent meets the rectangular hyperbola at only one real point. Thus, the line and the rectangular hyperbola have a common point. To calculate the point apply the properties and formulae of quadratic equations.
Complete step-by-step answer:
Let the point \[({{x}_{1}},{{y}_{1}})\] be the point of tangent.
This implies that the point \[({{x}_{1}},{{y}_{1}})\] lie both on the given line and on the rectangular hyperbola.
Thus, the point \[({{x}_{1}},{{y}_{1}})\] will satisfy the equations of rectangular hyperbola and the given line.
Now by substituting the point \[({{x}_{1}},{{y}_{1}})\] in the given equations, we get
\[l{{x}_{1}}+m{{y}_{1}}+n=0\] ….. (1)
\[{{x}_{1}}{{y}_{1}}={{c}^{2}}\]
\[{{x}_{1}}=\dfrac{{{c}^{2}}}{{{y}_{1}}}\]
By substituting the equation (1) in the above equation, we get
\[l\left( \dfrac{{{c}^{2}}}{{{y}_{1}}} \right)+m{{y}_{1}}+n=0\]
\[\dfrac{l{{c}^{2}}+{{y}_{1}}\left( m{{y}_{1}}+n \right)}{{{y}_{1}}}=0\]
\[l{{c}^{2}}+{{y}_{1}}\left( m{{y}_{1}}+n \right)=0\]
\[l{{c}^{2}}+my_{1}^{2}+n{{y}_{1}}=0\]
\[my_{1}^{2}+n{{y}_{1}}+l{{c}^{2}}=0\] …… (2)
The obtained quadratic equation has real roots. Thus, the discriminant of the quadratic equations is equal to 0.
We know that the formula of the discriminant of the general quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to \[{{b}^{2}}-4ac\]
\[\Rightarrow {{b}^{2}}-4ac=0\]
On comparing with equation (2), we get
\[a=m,b=n,c=l{{c}^{2}}\]
By substituting the values in the discriminant of quadratic equation formula, we get
\[{{n}^{2}}-4m(l{{c}^{2}})=0\]
\[4{{c}^{2}}lm={{n}^{2}}\]
Thus, the condition that the line may be a tangent to the rectangular hyperbola is \[4{{c}^{2}}lm={{n}^{2}}\]
Hence, option (d) is the right choice.
Note: The problem of mistake can be not analysing that the tangent meets the rectangular hyperbola at only one point. The other possibility of mistake is not being able to apply the properties and formulae of quadratic equations to solve. The alternative way of solving the question is option elimination method since only option contains the constant c, the other options can be ruled. The information about constants a and b is not mentioned in the question which makes them irrelevant.
Complete step-by-step answer:
Let the point \[({{x}_{1}},{{y}_{1}})\] be the point of tangent.
This implies that the point \[({{x}_{1}},{{y}_{1}})\] lie both on the given line and on the rectangular hyperbola.
Thus, the point \[({{x}_{1}},{{y}_{1}})\] will satisfy the equations of rectangular hyperbola and the given line.
Now by substituting the point \[({{x}_{1}},{{y}_{1}})\] in the given equations, we get
\[l{{x}_{1}}+m{{y}_{1}}+n=0\] ….. (1)
\[{{x}_{1}}{{y}_{1}}={{c}^{2}}\]
\[{{x}_{1}}=\dfrac{{{c}^{2}}}{{{y}_{1}}}\]
By substituting the equation (1) in the above equation, we get
\[l\left( \dfrac{{{c}^{2}}}{{{y}_{1}}} \right)+m{{y}_{1}}+n=0\]
\[\dfrac{l{{c}^{2}}+{{y}_{1}}\left( m{{y}_{1}}+n \right)}{{{y}_{1}}}=0\]
\[l{{c}^{2}}+{{y}_{1}}\left( m{{y}_{1}}+n \right)=0\]
\[l{{c}^{2}}+my_{1}^{2}+n{{y}_{1}}=0\]
\[my_{1}^{2}+n{{y}_{1}}+l{{c}^{2}}=0\] …… (2)
The obtained quadratic equation has real roots. Thus, the discriminant of the quadratic equations is equal to 0.
We know that the formula of the discriminant of the general quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to \[{{b}^{2}}-4ac\]
\[\Rightarrow {{b}^{2}}-4ac=0\]
On comparing with equation (2), we get
\[a=m,b=n,c=l{{c}^{2}}\]
By substituting the values in the discriminant of quadratic equation formula, we get
\[{{n}^{2}}-4m(l{{c}^{2}})=0\]
\[4{{c}^{2}}lm={{n}^{2}}\]
Thus, the condition that the line may be a tangent to the rectangular hyperbola is \[4{{c}^{2}}lm={{n}^{2}}\]
Hence, option (d) is the right choice.
Note: The problem of mistake can be not analysing that the tangent meets the rectangular hyperbola at only one point. The other possibility of mistake is not being able to apply the properties and formulae of quadratic equations to solve. The alternative way of solving the question is option elimination method since only option contains the constant c, the other options can be ruled. The information about constants a and b is not mentioned in the question which makes them irrelevant.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it