The coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$ is
Answer
Verified
437.1k+ views
Hint: In the above question you have to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. At first, you have to reduce the expanding term then by applying a simple law of exponent, the term will get reduced. Now find the coefficient of ${x^n}$ in the expansion of the new reduced term. So let us see how we can solve this problem.
Step by step solution:
In the given question we were asked to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. First of all, we will reduce the expression by the formula of $\dfrac{{x + y}}{z} = \dfrac{x}{z} + \dfrac{y}{z}$.
On applying the same formula on the expanding term we get
$= \dfrac{{{e^{7x}}}}{{{e^{3x}}}} + \dfrac{{{e^x}}}{{{e^{3x}}}}$
According to the law of exponent, $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$ . On applying the same law of exponent we get,
$= {e^{7x - 3x}} + {e^{x - 3x}}$
$= {e^{4x}} + {e^{ - 2x}}$
Now, we have reduced the term in $= {e^{4x}} + {e^{ - 2x}}$ . So we have to find the coefficient of ${x^n}$ in ${e^{4x}} + {e^{ - 2x}}$
$= \dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$
Therefore, the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$ is $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Note:
In the above solution we have used the law of exponent for reducing the expanding term and then we find the coefficient of ${x^n}$ in the expansion of that term which in our case is ${e^{4x}} + {e^{ - 2x}}$. Then we get the coefficients as 4 and -2. So, we get $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Step by step solution:
In the given question we were asked to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. First of all, we will reduce the expression by the formula of $\dfrac{{x + y}}{z} = \dfrac{x}{z} + \dfrac{y}{z}$.
On applying the same formula on the expanding term we get
$= \dfrac{{{e^{7x}}}}{{{e^{3x}}}} + \dfrac{{{e^x}}}{{{e^{3x}}}}$
According to the law of exponent, $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$ . On applying the same law of exponent we get,
$= {e^{7x - 3x}} + {e^{x - 3x}}$
$= {e^{4x}} + {e^{ - 2x}}$
Now, we have reduced the term in $= {e^{4x}} + {e^{ - 2x}}$ . So we have to find the coefficient of ${x^n}$ in ${e^{4x}} + {e^{ - 2x}}$
$= \dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$
Therefore, the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$ is $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Note:
In the above solution we have used the law of exponent for reducing the expanding term and then we find the coefficient of ${x^n}$ in the expansion of that term which in our case is ${e^{4x}} + {e^{ - 2x}}$. Then we get the coefficients as 4 and -2. So, we get $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE