Answer
Verified
417.6k+ views
Hint: In the above question you have to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. At first, you have to reduce the expanding term then by applying a simple law of exponent, the term will get reduced. Now find the coefficient of ${x^n}$ in the expansion of the new reduced term. So let us see how we can solve this problem.
Step by step solution:
In the given question we were asked to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. First of all, we will reduce the expression by the formula of $\dfrac{{x + y}}{z} = \dfrac{x}{z} + \dfrac{y}{z}$.
On applying the same formula on the expanding term we get
$= \dfrac{{{e^{7x}}}}{{{e^{3x}}}} + \dfrac{{{e^x}}}{{{e^{3x}}}}$
According to the law of exponent, $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$ . On applying the same law of exponent we get,
$= {e^{7x - 3x}} + {e^{x - 3x}}$
$= {e^{4x}} + {e^{ - 2x}}$
Now, we have reduced the term in $= {e^{4x}} + {e^{ - 2x}}$ . So we have to find the coefficient of ${x^n}$ in ${e^{4x}} + {e^{ - 2x}}$
$= \dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$
Therefore, the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$ is $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Note:
In the above solution we have used the law of exponent for reducing the expanding term and then we find the coefficient of ${x^n}$ in the expansion of that term which in our case is ${e^{4x}} + {e^{ - 2x}}$. Then we get the coefficients as 4 and -2. So, we get $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Step by step solution:
In the given question we were asked to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. First of all, we will reduce the expression by the formula of $\dfrac{{x + y}}{z} = \dfrac{x}{z} + \dfrac{y}{z}$.
On applying the same formula on the expanding term we get
$= \dfrac{{{e^{7x}}}}{{{e^{3x}}}} + \dfrac{{{e^x}}}{{{e^{3x}}}}$
According to the law of exponent, $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$ . On applying the same law of exponent we get,
$= {e^{7x - 3x}} + {e^{x - 3x}}$
$= {e^{4x}} + {e^{ - 2x}}$
Now, we have reduced the term in $= {e^{4x}} + {e^{ - 2x}}$ . So we have to find the coefficient of ${x^n}$ in ${e^{4x}} + {e^{ - 2x}}$
$= \dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$
Therefore, the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$ is $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Note:
In the above solution we have used the law of exponent for reducing the expanding term and then we find the coefficient of ${x^n}$ in the expansion of that term which in our case is ${e^{4x}} + {e^{ - 2x}}$. Then we get the coefficients as 4 and -2. So, we get $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE