
The change in Pressure will not affect the equilibrium constant for
A. \[{N_2}\left( g \right) + 3{H_2}\left( g \right) \to \;2N{H_3}\]\[\]\[\]
B.\[PC{l_5}\;\left( s \right) \to \;PC{l_3}\left( s \right) + C{l_2}(g)\]
C.\[\;{H_2}\left( g \right) + {I_2}\left( g \right) \to \;2HI\]
D.All of the above
Answer
506.4k+ views
Hint:
Apply Le Chatlelier’s Principle that governs the nature effect of Pressure, Temperature, and Concentration on equilibrium of the reaction. The change in pressure will not affect the equilibrium of those reactions that contain no difference in the number of moles of products and reactants.
Complete step by step answer:
When the number of molecules or atoms dissociating and going to products is equal to the number of molecules or atoms dissociating and going to reactants is equal we attain a state of equilibrium. When temperature is changed say for example is increased then more number of reactants will dissociate giving more number of product molecules. This change in temperature has altered the equilibrium. Similarly, if Pressure of the system containing gaseous reactants or products is changed then equilibrium may be hampered but condition is the number of moles of reactant should not be equal to the number of moles of products. If the number of moles of reactants is equal to the number of moles of product, then a change in pressure does not alter equilibrium.
As we look at the above equations.
-In (A) and (B) the total number of moles of the reactant is not equal to the total number of moles of product.
-But if we look at (C) reactants have a total of moles and products also have a total of 2 moles. So change in Pressure will not affect reaction (c). Conceptually thinking if pressure is increased then we have an equal number of moles to revert back thus no change happens.
\[{H_2} + {I_2} \to 2HI\]
Number of moles of product = 2
Number of moles of reactants \[ = {\text{ }}1 + 1 = 2\]
Total change \[ = {\text{ }}2 - 2{\text{ }} = {\text{ }}0\]
Hence, option C is correct.
Additional information
Example of le chatelier's principle includes changing reaction vessel volumes, changing amount of solid product, adding inert gas and adding a catalyst.
Stresses
-Concentration changes
-Temperature changes
-Pressure changes
Note:
If the pressure is increased, then the equilibrium shifts to the side with the fewer number of moles of gas. If the temperature is increased for an endothermic reaction, essentially a reactant is being added, so the equilibrium shifts towards products.
Apply Le Chatlelier’s Principle that governs the nature effect of Pressure, Temperature, and Concentration on equilibrium of the reaction. The change in pressure will not affect the equilibrium of those reactions that contain no difference in the number of moles of products and reactants.
Complete step by step answer:
When the number of molecules or atoms dissociating and going to products is equal to the number of molecules or atoms dissociating and going to reactants is equal we attain a state of equilibrium. When temperature is changed say for example is increased then more number of reactants will dissociate giving more number of product molecules. This change in temperature has altered the equilibrium. Similarly, if Pressure of the system containing gaseous reactants or products is changed then equilibrium may be hampered but condition is the number of moles of reactant should not be equal to the number of moles of products. If the number of moles of reactants is equal to the number of moles of product, then a change in pressure does not alter equilibrium.
As we look at the above equations.
-In (A) and (B) the total number of moles of the reactant is not equal to the total number of moles of product.
-But if we look at (C) reactants have a total of moles and products also have a total of 2 moles. So change in Pressure will not affect reaction (c). Conceptually thinking if pressure is increased then we have an equal number of moles to revert back thus no change happens.
\[{H_2} + {I_2} \to 2HI\]
Number of moles of product = 2
Number of moles of reactants \[ = {\text{ }}1 + 1 = 2\]
Total change \[ = {\text{ }}2 - 2{\text{ }} = {\text{ }}0\]
Hence, option C is correct.
Additional information
Example of le chatelier's principle includes changing reaction vessel volumes, changing amount of solid product, adding inert gas and adding a catalyst.
Stresses
-Concentration changes
-Temperature changes
-Pressure changes
Note:
If the pressure is increased, then the equilibrium shifts to the side with the fewer number of moles of gas. If the temperature is increased for an endothermic reaction, essentially a reactant is being added, so the equilibrium shifts towards products.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
