Answer
Verified
437.4k+ views
Hint: We are given with the center of the circle and its circumference. From this we will find the radius of the circle using the formula \[2\pi r\] . Then using the general equation of circle \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] and putting the value of center of circle we will get equation of circle.
Complete step-by-step answer:
Given that, circumference of a circle is \[10\pi \]
\[ \Rightarrow 10\pi = 2\pi r\]
Cancelling \[\pi \] from both sides,
\[ \Rightarrow r = 5unit.\]
Now we know that the general form of the equation is \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\].
Center of the circle is \[\left( {h,k} \right) = \left( {2, - 3} \right)\] and radius \[r = 5\].
Putting these values in the equation above
\[ \Rightarrow {\left( {x - 2} \right)^2} + {\left( {y - \left( { - 3} \right)} \right)^2} = {5^2}\]
Performing the expansions using the identity
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] and \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
\[
\Rightarrow {\left( {x - 2} \right)^2} + {\left( {y - \left( { - 3} \right)} \right)^2} = {5^2} \\
\Rightarrow {x^2} - 4x + 4 + \left( {{y^2} + 6y + 9} \right) = 25 \\
\Rightarrow {x^2} + {y^2} - 4x + 6y + 4 + 9 = 25 \\
\Rightarrow {x^2} + {y^2} - 4x + 6y + 13 = 25 \\
\Rightarrow {x^2} + {y^2} - 4x + 6y = 25 - 13 \\
\Rightarrow {x^2} + {y^2} - 4x + 6y = 12 \\
\]
And this is the equation of the circle \[{x^2} + {y^2} - 4x + 6y = 12\].
Hence option B is correct.
Note: We are given with four options here with slight difference in the signs only. So be careful when you expand the brackets and add or subtract the terms. Because a minor negligence will make your answer wrong.
Complete step-by-step answer:
Given that, circumference of a circle is \[10\pi \]
\[ \Rightarrow 10\pi = 2\pi r\]
Cancelling \[\pi \] from both sides,
\[ \Rightarrow r = 5unit.\]
Now we know that the general form of the equation is \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\].
Center of the circle is \[\left( {h,k} \right) = \left( {2, - 3} \right)\] and radius \[r = 5\].
Putting these values in the equation above
\[ \Rightarrow {\left( {x - 2} \right)^2} + {\left( {y - \left( { - 3} \right)} \right)^2} = {5^2}\]
Performing the expansions using the identity
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] and \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
\[
\Rightarrow {\left( {x - 2} \right)^2} + {\left( {y - \left( { - 3} \right)} \right)^2} = {5^2} \\
\Rightarrow {x^2} - 4x + 4 + \left( {{y^2} + 6y + 9} \right) = 25 \\
\Rightarrow {x^2} + {y^2} - 4x + 6y + 4 + 9 = 25 \\
\Rightarrow {x^2} + {y^2} - 4x + 6y + 13 = 25 \\
\Rightarrow {x^2} + {y^2} - 4x + 6y = 25 - 13 \\
\Rightarrow {x^2} + {y^2} - 4x + 6y = 12 \\
\]
And this is the equation of the circle \[{x^2} + {y^2} - 4x + 6y = 12\].
Hence option B is correct.
Note: We are given with four options here with slight difference in the signs only. So be careful when you expand the brackets and add or subtract the terms. Because a minor negligence will make your answer wrong.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE