
The capacity of an isolated conducting sphere of radius R is proportional to
A. ${R^2}$
B. $\dfrac{1}{{{R^2}}}$
C. $\dfrac{1}{R}$
D. $R$
Answer
473.7k+ views
Hint: In this question, we need to determine the capacity (or capacitance) of an isolated conducting sphere of radius R. For this, we will use the relation between the capacitance value of the conducting sphere and the radius of the sphere.
Complete step by step answer:The potential of a charged conducting sphere is given as $V = \dfrac{Q}{{4\pi {\varepsilon _0}R}}$ where, V is the potential, Q is the charge on the sphere, R is the radius of the sphere and ${\varepsilon _0}$ is the permittivity of the free space.
The ratio of the charge of the sphere to the change in the potential difference of the sphere results in the capacity (or the capacitance) of the sphere. Mathematically, \[C = \dfrac{Q}{{\vartriangle V}}\].
Let ‘a’ and ‘b’ be the inner and the outer radius of the sphere carrying a charge of ‘Q’ on the surface. Then, the change in the potential is given as:
$\vartriangle V = \dfrac{Q}{{\left[ {\dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}}} \right]}}$.
Substituting the value of $\vartriangle V = \dfrac{Q}{{\left[ {\dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}}} \right]}}$ in the equation \[C = \dfrac{Q}{{\vartriangle V}}\] to determine the capacitance of the conducting sphere.
\[
C = \dfrac{Q}{{\vartriangle V}} \\
= \dfrac{Q}{{\dfrac{Q}{{\left[ {\dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}}} \right]}}}} \\
= \dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}} - - - - (i) \\
\]
According to the question, the conducting sphere is isolated, which implies that the inner radius is ‘R’ whereas the outer radius is tending towards infinity. So, substituting these values in the equation (i), we get
\[
C = \dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}} \\
= \dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{R} - \dfrac{1}{\infty }} \right)}} \\
= \dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{R} - 0} \right)}} \\
= 4\pi {\varepsilon _0}R \\
\]
Therefore, we can write $C \propto R$
Hence, the capacity of the isolated conducting sphere is proportional to R.
Option D is correct.
Note:Students must be careful while substituting the values of the inner and the outer radius of the isolated sphere. Isolated sphere means that we have to take the outer radius to be the radius of the earth which is very large as compared to the inner radius of the sphere.
Complete step by step answer:The potential of a charged conducting sphere is given as $V = \dfrac{Q}{{4\pi {\varepsilon _0}R}}$ where, V is the potential, Q is the charge on the sphere, R is the radius of the sphere and ${\varepsilon _0}$ is the permittivity of the free space.
The ratio of the charge of the sphere to the change in the potential difference of the sphere results in the capacity (or the capacitance) of the sphere. Mathematically, \[C = \dfrac{Q}{{\vartriangle V}}\].
Let ‘a’ and ‘b’ be the inner and the outer radius of the sphere carrying a charge of ‘Q’ on the surface. Then, the change in the potential is given as:
$\vartriangle V = \dfrac{Q}{{\left[ {\dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}}} \right]}}$.
Substituting the value of $\vartriangle V = \dfrac{Q}{{\left[ {\dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}}} \right]}}$ in the equation \[C = \dfrac{Q}{{\vartriangle V}}\] to determine the capacitance of the conducting sphere.
\[
C = \dfrac{Q}{{\vartriangle V}} \\
= \dfrac{Q}{{\dfrac{Q}{{\left[ {\dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}}} \right]}}}} \\
= \dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}} - - - - (i) \\
\]
According to the question, the conducting sphere is isolated, which implies that the inner radius is ‘R’ whereas the outer radius is tending towards infinity. So, substituting these values in the equation (i), we get
\[
C = \dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{a} - \dfrac{1}{b}} \right)}} \\
= \dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{R} - \dfrac{1}{\infty }} \right)}} \\
= \dfrac{{4\pi {\varepsilon _0}}}{{\left( {\dfrac{1}{R} - 0} \right)}} \\
= 4\pi {\varepsilon _0}R \\
\]
Therefore, we can write $C \propto R$
Hence, the capacity of the isolated conducting sphere is proportional to R.
Option D is correct.
Note:Students must be careful while substituting the values of the inner and the outer radius of the isolated sphere. Isolated sphere means that we have to take the outer radius to be the radius of the earth which is very large as compared to the inner radius of the sphere.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
