
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\] .
\[\Delta H\] for the formation of \[XY~is\text{ }-200\text{ }kJ/mol\]. The bond dissociation energy of \[{{\text{X}}_{2}}\] will be :
A. \[800\text{ }kJ/mol\]
B. \[200\text{ }kJ/mol\]
C. \[400\text{ }kJ/mol\]
D. \[100\text{ }kJ/mol\]
Answer
584.4k+ views
Hint: Use Hess’s law of constant heat summation. According to Hess’s law of constant heat summation, the enthalpy change for a reaction is the same whether the reaction takes place in one or a series of steps.
Complete step by step answer:
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\].
Let a kJ/mol be the bond dissociation energy of \[{{\text{X}}_{2}}\]. The bond dissociation energy of \[{{\text{Y}}_{2}}\] will also be a kJ/mol. The bond dissociation energy of \[\text{XY}\]will be \[\text{0}\text{.5 }kJ/mol\].
Write balance chemical equations that represent bond dissociation processes.
\[\begin{align}
& \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \\
& {{\text{X}}_{2}}\to 2\text{X }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(2) } \\
& {{\text{Y}}_{2}}\to 2\text{Y }\Delta H\text{ = 0}\text{.5a kJ/mol }...\text{ }...\text{(3) } \\
\end{align}\]
Write the reaction for the formation of \[\text{XY}\].
\[\frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4)\]
Add equations (2) and (3) and divide the result with 2.
\[\begin{align}
& \frac{{{\text{X}}_{2}}+{{\text{Y}}_{2}}\to 2\text{X+}2\text{Y }\Delta H\text{ = a kJ/mol+0}\text{.5a kJ/mol}}{2}\text{ } \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
\end{align}\]
Subtract equation (5) from equation (1) to obtain equation (4)
\[\begin{align}
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
& -\left[ \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \right] \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4) \\
\end{align}\]
Calculate the enthalpy change for reaction (4) by subtracting the enthalpy change for reaction (1) from the enthalpy change for reaction (1)
\[\begin{align}
& \Delta H\text{ = 0}\text{.75a kJ/mol}-\text{a kJ/mol} \\
& \Delta H\text{ = }-\text{0}\text{.25a kJ/mol} \\
\end{align}\]
But \[\Delta H\]for the formation of \[\text{XY}\] is \[-200\text{ }kJ/mol\].
Hence,
\[\begin{align}
& -\text{200 kJ/mol = }-\text{0}\text{.25a kJ/mol} \\
& \text{a=}\frac{-200\text{ kJ/mol}}{-0.25} \\
& \text{a=800 kJ/mol}
\end{align}\]
Hence, the option A) \[800\text{ }kJ/mol\]is the correct answer.
Note:
When two reactions are added, the values of the enthalpy changes are also added. When two reactions are subtracted, the values of the enthalpy changes are also subtracted. When a reaction is divided with a number, the enthalpy change value is also divided with the same number.
Complete step by step answer:
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\].
Let a kJ/mol be the bond dissociation energy of \[{{\text{X}}_{2}}\]. The bond dissociation energy of \[{{\text{Y}}_{2}}\] will also be a kJ/mol. The bond dissociation energy of \[\text{XY}\]will be \[\text{0}\text{.5 }kJ/mol\].
Write balance chemical equations that represent bond dissociation processes.
\[\begin{align}
& \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \\
& {{\text{X}}_{2}}\to 2\text{X }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(2) } \\
& {{\text{Y}}_{2}}\to 2\text{Y }\Delta H\text{ = 0}\text{.5a kJ/mol }...\text{ }...\text{(3) } \\
\end{align}\]
Write the reaction for the formation of \[\text{XY}\].
\[\frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4)\]
Add equations (2) and (3) and divide the result with 2.
\[\begin{align}
& \frac{{{\text{X}}_{2}}+{{\text{Y}}_{2}}\to 2\text{X+}2\text{Y }\Delta H\text{ = a kJ/mol+0}\text{.5a kJ/mol}}{2}\text{ } \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
\end{align}\]
Subtract equation (5) from equation (1) to obtain equation (4)
\[\begin{align}
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
& -\left[ \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \right] \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4) \\
\end{align}\]
Calculate the enthalpy change for reaction (4) by subtracting the enthalpy change for reaction (1) from the enthalpy change for reaction (1)
\[\begin{align}
& \Delta H\text{ = 0}\text{.75a kJ/mol}-\text{a kJ/mol} \\
& \Delta H\text{ = }-\text{0}\text{.25a kJ/mol} \\
\end{align}\]
But \[\Delta H\]for the formation of \[\text{XY}\] is \[-200\text{ }kJ/mol\].
Hence,
\[\begin{align}
& -\text{200 kJ/mol = }-\text{0}\text{.25a kJ/mol} \\
& \text{a=}\frac{-200\text{ kJ/mol}}{-0.25} \\
& \text{a=800 kJ/mol}
\end{align}\]
Hence, the option A) \[800\text{ }kJ/mol\]is the correct answer.
Note:
When two reactions are added, the values of the enthalpy changes are also added. When two reactions are subtracted, the values of the enthalpy changes are also subtracted. When a reaction is divided with a number, the enthalpy change value is also divided with the same number.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

