
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\] .
\[\Delta H\] for the formation of \[XY~is\text{ }-200\text{ }kJ/mol\]. The bond dissociation energy of \[{{\text{X}}_{2}}\] will be :
A. \[800\text{ }kJ/mol\]
B. \[200\text{ }kJ/mol\]
C. \[400\text{ }kJ/mol\]
D. \[100\text{ }kJ/mol\]
Answer
484.5k+ views
Hint: Use Hess’s law of constant heat summation. According to Hess’s law of constant heat summation, the enthalpy change for a reaction is the same whether the reaction takes place in one or a series of steps.
Complete step by step answer:
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\].
Let a kJ/mol be the bond dissociation energy of \[{{\text{X}}_{2}}\]. The bond dissociation energy of \[{{\text{Y}}_{2}}\] will also be a kJ/mol. The bond dissociation energy of \[\text{XY}\]will be \[\text{0}\text{.5 }kJ/mol\].
Write balance chemical equations that represent bond dissociation processes.
\[\begin{align}
& \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \\
& {{\text{X}}_{2}}\to 2\text{X }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(2) } \\
& {{\text{Y}}_{2}}\to 2\text{Y }\Delta H\text{ = 0}\text{.5a kJ/mol }...\text{ }...\text{(3) } \\
\end{align}\]
Write the reaction for the formation of \[\text{XY}\].
\[\frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4)\]
Add equations (2) and (3) and divide the result with 2.
\[\begin{align}
& \frac{{{\text{X}}_{2}}+{{\text{Y}}_{2}}\to 2\text{X+}2\text{Y }\Delta H\text{ = a kJ/mol+0}\text{.5a kJ/mol}}{2}\text{ } \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
\end{align}\]
Subtract equation (5) from equation (1) to obtain equation (4)
\[\begin{align}
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
& -\left[ \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \right] \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4) \\
\end{align}\]
Calculate the enthalpy change for reaction (4) by subtracting the enthalpy change for reaction (1) from the enthalpy change for reaction (1)
\[\begin{align}
& \Delta H\text{ = 0}\text{.75a kJ/mol}-\text{a kJ/mol} \\
& \Delta H\text{ = }-\text{0}\text{.25a kJ/mol} \\
\end{align}\]
But \[\Delta H\]for the formation of \[\text{XY}\] is \[-200\text{ }kJ/mol\].
Hence,
\[\begin{align}
& -\text{200 kJ/mol = }-\text{0}\text{.25a kJ/mol} \\
& \text{a=}\frac{-200\text{ kJ/mol}}{-0.25} \\
& \text{a=800 kJ/mol}
\end{align}\]
Hence, the option A) \[800\text{ }kJ/mol\]is the correct answer.
Note:
When two reactions are added, the values of the enthalpy changes are also added. When two reactions are subtracted, the values of the enthalpy changes are also subtracted. When a reaction is divided with a number, the enthalpy change value is also divided with the same number.
Complete step by step answer:
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\].
Let a kJ/mol be the bond dissociation energy of \[{{\text{X}}_{2}}\]. The bond dissociation energy of \[{{\text{Y}}_{2}}\] will also be a kJ/mol. The bond dissociation energy of \[\text{XY}\]will be \[\text{0}\text{.5 }kJ/mol\].
Write balance chemical equations that represent bond dissociation processes.
\[\begin{align}
& \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \\
& {{\text{X}}_{2}}\to 2\text{X }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(2) } \\
& {{\text{Y}}_{2}}\to 2\text{Y }\Delta H\text{ = 0}\text{.5a kJ/mol }...\text{ }...\text{(3) } \\
\end{align}\]
Write the reaction for the formation of \[\text{XY}\].
\[\frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4)\]
Add equations (2) and (3) and divide the result with 2.
\[\begin{align}
& \frac{{{\text{X}}_{2}}+{{\text{Y}}_{2}}\to 2\text{X+}2\text{Y }\Delta H\text{ = a kJ/mol+0}\text{.5a kJ/mol}}{2}\text{ } \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
\end{align}\]
Subtract equation (5) from equation (1) to obtain equation (4)
\[\begin{align}
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
& -\left[ \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \right] \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4) \\
\end{align}\]
Calculate the enthalpy change for reaction (4) by subtracting the enthalpy change for reaction (1) from the enthalpy change for reaction (1)
\[\begin{align}
& \Delta H\text{ = 0}\text{.75a kJ/mol}-\text{a kJ/mol} \\
& \Delta H\text{ = }-\text{0}\text{.25a kJ/mol} \\
\end{align}\]
But \[\Delta H\]for the formation of \[\text{XY}\] is \[-200\text{ }kJ/mol\].
Hence,
\[\begin{align}
& -\text{200 kJ/mol = }-\text{0}\text{.25a kJ/mol} \\
& \text{a=}\frac{-200\text{ kJ/mol}}{-0.25} \\
& \text{a=800 kJ/mol}
\end{align}\]
Hence, the option A) \[800\text{ }kJ/mol\]is the correct answer.
Note:
When two reactions are added, the values of the enthalpy changes are also added. When two reactions are subtracted, the values of the enthalpy changes are also subtracted. When a reaction is divided with a number, the enthalpy change value is also divided with the same number.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
