Answer
Verified
445.5k+ views
Hint: This question can be done by putting the value of terms of the sequence in given options and then we can find out the correct option. Basically we have to find the $n^{th}$ term of the sequence.
Complete step-by-step answer:
The arithmetic sequence is given by 2, 12, 36, and 80 here ${T_1} = 2, {T_2} = 12, {T_3} = 36, {T_4} = 80$
Now we will put n=1 in ${n^2}(n - 1)$ and see if the result is coming 2 or not.
$ \Rightarrow {(1)^2}(1 - 1) = 0$
Therefore this function is incorrect as the first term which should be 2 is not coming here.
Now we will put n=1 in $n(n + 1)$ and see if the result is coming 2 or not.
$ \Rightarrow 1(1 + 1) = 2$
Therefore this function can be correct as the first term which should be 2 is coming here but we have to check the other functions as well.
Now we will put n=1 in ${n^2}(n + 1)$ and see if the result is coming 2 or not.
$ \Rightarrow {(1)^2}(1 + 1) = 2$
Therefore this function can be correct as the first term which should be 2 is coming here but we have to check the other functions as well.
Now we will put n=1 in ${n^2}(n + 2)$ and see if the result is coming 2 or not.
$ \Rightarrow {(1)^2}(1 + 2) = 3$
Therefore this function is incorrect as the first term which should be 2 is not coming here.
After this two options are eliminated that are options (A) and (D). Now we will do same process with other two options that are (B) and (C) but now we will put n=2
Now we will put n=2 in $n(n + 1)$ and see if the result is coming 12 or not.
$ \Rightarrow 2(2 + 1) = 6$
Therefore this function is incorrect as the second term which should be 12 is not coming here.
Now we will put n=2 in ${n^2}(n + 1)$ and see if the result is coming 12 or not.
$ \Rightarrow {(2)^2}(2 + 1) = 4 \times 3 = 12$
Therefore this function is correct as required second term 12 is coming here.
So, the correct answer is “Option C”.
Note: Students may likely to make mistake by trying to solve this question by applying direct formula of $n^{th}$ term of an A.P (arithmetic progression) which is given by ${T_n} = a + (n - 1)d$ where a= first term of the sequence and d=common difference which is given by $d = {T_n} - {T_{n - 1}}$. But here the full sequence is not given so the number of terms is not given so this formula cannot be applied directly.
Complete step-by-step answer:
The arithmetic sequence is given by 2, 12, 36, and 80 here ${T_1} = 2, {T_2} = 12, {T_3} = 36, {T_4} = 80$
Now we will put n=1 in ${n^2}(n - 1)$ and see if the result is coming 2 or not.
$ \Rightarrow {(1)^2}(1 - 1) = 0$
Therefore this function is incorrect as the first term which should be 2 is not coming here.
Now we will put n=1 in $n(n + 1)$ and see if the result is coming 2 or not.
$ \Rightarrow 1(1 + 1) = 2$
Therefore this function can be correct as the first term which should be 2 is coming here but we have to check the other functions as well.
Now we will put n=1 in ${n^2}(n + 1)$ and see if the result is coming 2 or not.
$ \Rightarrow {(1)^2}(1 + 1) = 2$
Therefore this function can be correct as the first term which should be 2 is coming here but we have to check the other functions as well.
Now we will put n=1 in ${n^2}(n + 2)$ and see if the result is coming 2 or not.
$ \Rightarrow {(1)^2}(1 + 2) = 3$
Therefore this function is incorrect as the first term which should be 2 is not coming here.
After this two options are eliminated that are options (A) and (D). Now we will do same process with other two options that are (B) and (C) but now we will put n=2
Now we will put n=2 in $n(n + 1)$ and see if the result is coming 12 or not.
$ \Rightarrow 2(2 + 1) = 6$
Therefore this function is incorrect as the second term which should be 12 is not coming here.
Now we will put n=2 in ${n^2}(n + 1)$ and see if the result is coming 12 or not.
$ \Rightarrow {(2)^2}(2 + 1) = 4 \times 3 = 12$
Therefore this function is correct as required second term 12 is coming here.
So, the correct answer is “Option C”.
Note: Students may likely to make mistake by trying to solve this question by applying direct formula of $n^{th}$ term of an A.P (arithmetic progression) which is given by ${T_n} = a + (n - 1)d$ where a= first term of the sequence and d=common difference which is given by $d = {T_n} - {T_{n - 1}}$. But here the full sequence is not given so the number of terms is not given so this formula cannot be applied directly.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths