
The anti-derivative of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ whose graph passes through $\left( {e,e} \right)$ is
A. $x\left[ {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right]$
B. $x\left[ { - \log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right] + e$
C. $x\left[ {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right] + 2e$
D. $x\left[ { - \log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right] + 3e$
Answer
577.5k+ views
Hint: The expression of $f\left( x \right)$ is a polynomial in $\left( {\log x} \right)$, so we will substitute $\left( {\log x} \right) = t$ to simplify the above expression and then find the integral or anti-derivative of the given function. We will also use a special integral to find the anti-derivative, i.e. \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]. The final integral will contain an arbitrary constant which can be eliminated by substituting the given point in the final expression.
Complete step by step answer:
We have, $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$
Anti-derivative of a function of the inverse function of derivative, or we can say anti-derivative is the integral function.
Let antiderivative function of $f\left( x \right)$is $I$
So, by the definition of antiderivative, we have:
$I = \int {f\left( x \right)dx} $
$ \Rightarrow I = \int {\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 2}}} \right)dx} $
As, the given function is a function of $\log x$
So, we will substitute $\left( {\log x} \right) = t$,
Now, we have
$t = \log x$
Differentiating both sides with respect to x:
\[ \Rightarrow {\text{dt = d}}\left( {{\text{logx}}} \right)\]
\[ \Rightarrow dt = \dfrac{1}{x}dx\]
\[ \Rightarrow {\text{dx = }}{{\text{e}}^{\text{t}}}{\text{dt}}\]
Now, substituting\[dx = {e^t}dt\], we have
$I = \int {\left( {\log \left( t \right) + {{\left( t \right)}^{ - 2}}} \right){e^t}dt} $
$ \Rightarrow {\text{I = }}\int {\left( {{\text{log}}\left( {\text{t}} \right){\text{ + }}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} \right){{\text{e}}^{\text{t}}}{\text{dt}}} $
$ \Rightarrow {\text{I = }}\int {{{\text{e}}^{\text{t}}}{\text{logtdt + }}\int {{{\text{e}}^{\text{t}}}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} {\text{dt}}} $
Now, adding and subtracting \[\dfrac{{\text{1}}}{{\text{t}}}\] in, \[\left( {\log \left( t \right) + \dfrac{1}{{{t^2}}}} \right)\] in order to make the above term easy for simplification and substitution.
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt + \int {{e^t}\left( {\dfrac{1}{{{t^2}}} - \dfrac{1}{t}} \right)} dt} $
Taking negative sign common from the second part of the above equation and simplify it as below given,
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt - \int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt} $
Now, we know that the following special integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, by using the above property, we have:
$\int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt = } {e^t}\log t + C$ and
\[\int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt = {e^t}\dfrac{1}{t} + B\]
Where C and B are arbitrary constants.
$ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}{\text{logt + C - }}\dfrac{{{{\text{e}}^{\text{t}}}}}{{\text{t}}}{\text{ + B}}$
\[ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}\left( {{\text{logt - }}\dfrac{{\text{1}}}{{\text{t}}}} \right){\text{ + A}}\], where A is an arbitrary constant.
Now, substituting back, $t = \log x$ to find the antiderivative of the given function in terms of x, we have:
\[ \Rightarrow {\text{I = }}{{\text{e}}^{{\text{logx}}}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - \dfrac{{\text{1}}}{{{\text{logx}}}}} \right){\text{ + A}}\]
\[ \Rightarrow {\text{I = x}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - {{\left( {{\text{logx}}} \right)}^{{\text{ - 1}}}}} \right){\text{ + A}}\]
Now, as given, the graph of antiderivative passes through $\left( {e,e} \right)$, therefore substituting x and y both as e
\[ \Rightarrow I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log \left( {\log e} \right) - {{\left( {\log e} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log 1 - 1} \right) + A\]
\[ \Rightarrow 2e = A\]
\[ \Rightarrow A = 2e\]
So, we have \[A = 2e\], substituting \[A = 2e\] in the above result,
Thus, \[I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\]
Hence, the derivative function of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ is\[x\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\], so option (c) is the correct answer.
Note: Students must remember the special integrals carefully and apply them in the problems to make them easy. Ability to convert a given integral into a known integral whose solution is known is also an important thing. The special integral used in the above problem is: \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
We will prove the above integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} \]
\[I = \int {{e^x}f\left( x \right)} + \int {{e^x}f'\left( x \right)} \]
Now, using integrating by parts, using
$\int {uvdx} = u\int {vdx} - \int {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} $
So,
\[\int {{e^x}f\left( x \right)} = f\left( x \right)\int {{e^x}dx} - \int {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}\left( {\int {{e^x}dx} } \right)dx} \]
\[ \Rightarrow \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} - \int {f'\left( x \right){e^x}dx} + C\]
\[ \Rightarrow \int {f'\left( x \right){e^x}dx} + \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} + C\]
\[ \Rightarrow \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Hence, proved
Complete step by step answer:
We have, $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$
Anti-derivative of a function of the inverse function of derivative, or we can say anti-derivative is the integral function.
Let antiderivative function of $f\left( x \right)$is $I$
So, by the definition of antiderivative, we have:
$I = \int {f\left( x \right)dx} $
$ \Rightarrow I = \int {\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 2}}} \right)dx} $
As, the given function is a function of $\log x$
So, we will substitute $\left( {\log x} \right) = t$,
Now, we have
$t = \log x$
Differentiating both sides with respect to x:
\[ \Rightarrow {\text{dt = d}}\left( {{\text{logx}}} \right)\]
\[ \Rightarrow dt = \dfrac{1}{x}dx\]
\[ \Rightarrow {\text{dx = }}{{\text{e}}^{\text{t}}}{\text{dt}}\]
Now, substituting\[dx = {e^t}dt\], we have
$I = \int {\left( {\log \left( t \right) + {{\left( t \right)}^{ - 2}}} \right){e^t}dt} $
$ \Rightarrow {\text{I = }}\int {\left( {{\text{log}}\left( {\text{t}} \right){\text{ + }}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} \right){{\text{e}}^{\text{t}}}{\text{dt}}} $
$ \Rightarrow {\text{I = }}\int {{{\text{e}}^{\text{t}}}{\text{logtdt + }}\int {{{\text{e}}^{\text{t}}}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} {\text{dt}}} $
Now, adding and subtracting \[\dfrac{{\text{1}}}{{\text{t}}}\] in, \[\left( {\log \left( t \right) + \dfrac{1}{{{t^2}}}} \right)\] in order to make the above term easy for simplification and substitution.
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt + \int {{e^t}\left( {\dfrac{1}{{{t^2}}} - \dfrac{1}{t}} \right)} dt} $
Taking negative sign common from the second part of the above equation and simplify it as below given,
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt - \int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt} $
Now, we know that the following special integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, by using the above property, we have:
$\int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt = } {e^t}\log t + C$ and
\[\int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt = {e^t}\dfrac{1}{t} + B\]
Where C and B are arbitrary constants.
$ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}{\text{logt + C - }}\dfrac{{{{\text{e}}^{\text{t}}}}}{{\text{t}}}{\text{ + B}}$
\[ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}\left( {{\text{logt - }}\dfrac{{\text{1}}}{{\text{t}}}} \right){\text{ + A}}\], where A is an arbitrary constant.
Now, substituting back, $t = \log x$ to find the antiderivative of the given function in terms of x, we have:
\[ \Rightarrow {\text{I = }}{{\text{e}}^{{\text{logx}}}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - \dfrac{{\text{1}}}{{{\text{logx}}}}} \right){\text{ + A}}\]
\[ \Rightarrow {\text{I = x}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - {{\left( {{\text{logx}}} \right)}^{{\text{ - 1}}}}} \right){\text{ + A}}\]
Now, as given, the graph of antiderivative passes through $\left( {e,e} \right)$, therefore substituting x and y both as e
\[ \Rightarrow I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log \left( {\log e} \right) - {{\left( {\log e} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log 1 - 1} \right) + A\]
\[ \Rightarrow 2e = A\]
\[ \Rightarrow A = 2e\]
So, we have \[A = 2e\], substituting \[A = 2e\] in the above result,
Thus, \[I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\]
Hence, the derivative function of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ is\[x\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\], so option (c) is the correct answer.
Note: Students must remember the special integrals carefully and apply them in the problems to make them easy. Ability to convert a given integral into a known integral whose solution is known is also an important thing. The special integral used in the above problem is: \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
We will prove the above integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} \]
\[I = \int {{e^x}f\left( x \right)} + \int {{e^x}f'\left( x \right)} \]
Now, using integrating by parts, using
$\int {uvdx} = u\int {vdx} - \int {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} $
So,
\[\int {{e^x}f\left( x \right)} = f\left( x \right)\int {{e^x}dx} - \int {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}\left( {\int {{e^x}dx} } \right)dx} \]
\[ \Rightarrow \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} - \int {f'\left( x \right){e^x}dx} + C\]
\[ \Rightarrow \int {f'\left( x \right){e^x}dx} + \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} + C\]
\[ \Rightarrow \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Hence, proved
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

