
The anti-derivative of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ whose graph passes through $\left( {e,e} \right)$ is
A. $x\left[ {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right]$
B. $x\left[ { - \log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right] + e$
C. $x\left[ {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right] + 2e$
D. $x\left[ { - \log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right] + 3e$
Answer
513k+ views
Hint: The expression of $f\left( x \right)$ is a polynomial in $\left( {\log x} \right)$, so we will substitute $\left( {\log x} \right) = t$ to simplify the above expression and then find the integral or anti-derivative of the given function. We will also use a special integral to find the anti-derivative, i.e. \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]. The final integral will contain an arbitrary constant which can be eliminated by substituting the given point in the final expression.
Complete step by step answer:
We have, $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$
Anti-derivative of a function of the inverse function of derivative, or we can say anti-derivative is the integral function.
Let antiderivative function of $f\left( x \right)$is $I$
So, by the definition of antiderivative, we have:
$I = \int {f\left( x \right)dx} $
$ \Rightarrow I = \int {\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 2}}} \right)dx} $
As, the given function is a function of $\log x$
So, we will substitute $\left( {\log x} \right) = t$,
Now, we have
$t = \log x$
Differentiating both sides with respect to x:
\[ \Rightarrow {\text{dt = d}}\left( {{\text{logx}}} \right)\]
\[ \Rightarrow dt = \dfrac{1}{x}dx\]
\[ \Rightarrow {\text{dx = }}{{\text{e}}^{\text{t}}}{\text{dt}}\]
Now, substituting\[dx = {e^t}dt\], we have
$I = \int {\left( {\log \left( t \right) + {{\left( t \right)}^{ - 2}}} \right){e^t}dt} $
$ \Rightarrow {\text{I = }}\int {\left( {{\text{log}}\left( {\text{t}} \right){\text{ + }}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} \right){{\text{e}}^{\text{t}}}{\text{dt}}} $
$ \Rightarrow {\text{I = }}\int {{{\text{e}}^{\text{t}}}{\text{logtdt + }}\int {{{\text{e}}^{\text{t}}}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} {\text{dt}}} $
Now, adding and subtracting \[\dfrac{{\text{1}}}{{\text{t}}}\] in, \[\left( {\log \left( t \right) + \dfrac{1}{{{t^2}}}} \right)\] in order to make the above term easy for simplification and substitution.
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt + \int {{e^t}\left( {\dfrac{1}{{{t^2}}} - \dfrac{1}{t}} \right)} dt} $
Taking negative sign common from the second part of the above equation and simplify it as below given,
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt - \int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt} $
Now, we know that the following special integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, by using the above property, we have:
$\int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt = } {e^t}\log t + C$ and
\[\int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt = {e^t}\dfrac{1}{t} + B\]
Where C and B are arbitrary constants.
$ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}{\text{logt + C - }}\dfrac{{{{\text{e}}^{\text{t}}}}}{{\text{t}}}{\text{ + B}}$
\[ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}\left( {{\text{logt - }}\dfrac{{\text{1}}}{{\text{t}}}} \right){\text{ + A}}\], where A is an arbitrary constant.
Now, substituting back, $t = \log x$ to find the antiderivative of the given function in terms of x, we have:
\[ \Rightarrow {\text{I = }}{{\text{e}}^{{\text{logx}}}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - \dfrac{{\text{1}}}{{{\text{logx}}}}} \right){\text{ + A}}\]
\[ \Rightarrow {\text{I = x}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - {{\left( {{\text{logx}}} \right)}^{{\text{ - 1}}}}} \right){\text{ + A}}\]
Now, as given, the graph of antiderivative passes through $\left( {e,e} \right)$, therefore substituting x and y both as e
\[ \Rightarrow I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log \left( {\log e} \right) - {{\left( {\log e} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log 1 - 1} \right) + A\]
\[ \Rightarrow 2e = A\]
\[ \Rightarrow A = 2e\]
So, we have \[A = 2e\], substituting \[A = 2e\] in the above result,
Thus, \[I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\]
Hence, the derivative function of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ is\[x\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\], so option (c) is the correct answer.
Note: Students must remember the special integrals carefully and apply them in the problems to make them easy. Ability to convert a given integral into a known integral whose solution is known is also an important thing. The special integral used in the above problem is: \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
We will prove the above integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} \]
\[I = \int {{e^x}f\left( x \right)} + \int {{e^x}f'\left( x \right)} \]
Now, using integrating by parts, using
$\int {uvdx} = u\int {vdx} - \int {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} $
So,
\[\int {{e^x}f\left( x \right)} = f\left( x \right)\int {{e^x}dx} - \int {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}\left( {\int {{e^x}dx} } \right)dx} \]
\[ \Rightarrow \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} - \int {f'\left( x \right){e^x}dx} + C\]
\[ \Rightarrow \int {f'\left( x \right){e^x}dx} + \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} + C\]
\[ \Rightarrow \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Hence, proved
Complete step by step answer:
We have, $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$
Anti-derivative of a function of the inverse function of derivative, or we can say anti-derivative is the integral function.
Let antiderivative function of $f\left( x \right)$is $I$
So, by the definition of antiderivative, we have:
$I = \int {f\left( x \right)dx} $
$ \Rightarrow I = \int {\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 2}}} \right)dx} $
As, the given function is a function of $\log x$
So, we will substitute $\left( {\log x} \right) = t$,
Now, we have
$t = \log x$
Differentiating both sides with respect to x:
\[ \Rightarrow {\text{dt = d}}\left( {{\text{logx}}} \right)\]
\[ \Rightarrow dt = \dfrac{1}{x}dx\]
\[ \Rightarrow {\text{dx = }}{{\text{e}}^{\text{t}}}{\text{dt}}\]
Now, substituting\[dx = {e^t}dt\], we have
$I = \int {\left( {\log \left( t \right) + {{\left( t \right)}^{ - 2}}} \right){e^t}dt} $
$ \Rightarrow {\text{I = }}\int {\left( {{\text{log}}\left( {\text{t}} \right){\text{ + }}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} \right){{\text{e}}^{\text{t}}}{\text{dt}}} $
$ \Rightarrow {\text{I = }}\int {{{\text{e}}^{\text{t}}}{\text{logtdt + }}\int {{{\text{e}}^{\text{t}}}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} {\text{dt}}} $
Now, adding and subtracting \[\dfrac{{\text{1}}}{{\text{t}}}\] in, \[\left( {\log \left( t \right) + \dfrac{1}{{{t^2}}}} \right)\] in order to make the above term easy for simplification and substitution.
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt + \int {{e^t}\left( {\dfrac{1}{{{t^2}}} - \dfrac{1}{t}} \right)} dt} $
Taking negative sign common from the second part of the above equation and simplify it as below given,
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt - \int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt} $
Now, we know that the following special integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, by using the above property, we have:
$\int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt = } {e^t}\log t + C$ and
\[\int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt = {e^t}\dfrac{1}{t} + B\]
Where C and B are arbitrary constants.
$ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}{\text{logt + C - }}\dfrac{{{{\text{e}}^{\text{t}}}}}{{\text{t}}}{\text{ + B}}$
\[ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}\left( {{\text{logt - }}\dfrac{{\text{1}}}{{\text{t}}}} \right){\text{ + A}}\], where A is an arbitrary constant.
Now, substituting back, $t = \log x$ to find the antiderivative of the given function in terms of x, we have:
\[ \Rightarrow {\text{I = }}{{\text{e}}^{{\text{logx}}}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - \dfrac{{\text{1}}}{{{\text{logx}}}}} \right){\text{ + A}}\]
\[ \Rightarrow {\text{I = x}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - {{\left( {{\text{logx}}} \right)}^{{\text{ - 1}}}}} \right){\text{ + A}}\]
Now, as given, the graph of antiderivative passes through $\left( {e,e} \right)$, therefore substituting x and y both as e
\[ \Rightarrow I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log \left( {\log e} \right) - {{\left( {\log e} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log 1 - 1} \right) + A\]
\[ \Rightarrow 2e = A\]
\[ \Rightarrow A = 2e\]
So, we have \[A = 2e\], substituting \[A = 2e\] in the above result,
Thus, \[I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\]
Hence, the derivative function of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ is\[x\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\], so option (c) is the correct answer.
Note: Students must remember the special integrals carefully and apply them in the problems to make them easy. Ability to convert a given integral into a known integral whose solution is known is also an important thing. The special integral used in the above problem is: \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
We will prove the above integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} \]
\[I = \int {{e^x}f\left( x \right)} + \int {{e^x}f'\left( x \right)} \]
Now, using integrating by parts, using
$\int {uvdx} = u\int {vdx} - \int {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} $
So,
\[\int {{e^x}f\left( x \right)} = f\left( x \right)\int {{e^x}dx} - \int {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}\left( {\int {{e^x}dx} } \right)dx} \]
\[ \Rightarrow \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} - \int {f'\left( x \right){e^x}dx} + C\]
\[ \Rightarrow \int {f'\left( x \right){e^x}dx} + \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} + C\]
\[ \Rightarrow \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Hence, proved
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
