
The anti-derivative of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ whose graph passes through $\left( {e,e} \right)$ is
A. $x\left[ {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right]$
B. $x\left[ { - \log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right] + e$
C. $x\left[ {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right] + 2e$
D. $x\left[ { - \log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right] + 3e$
Answer
586.8k+ views
Hint: The expression of $f\left( x \right)$ is a polynomial in $\left( {\log x} \right)$, so we will substitute $\left( {\log x} \right) = t$ to simplify the above expression and then find the integral or anti-derivative of the given function. We will also use a special integral to find the anti-derivative, i.e. \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]. The final integral will contain an arbitrary constant which can be eliminated by substituting the given point in the final expression.
Complete step by step answer:
We have, $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$
Anti-derivative of a function of the inverse function of derivative, or we can say anti-derivative is the integral function.
Let antiderivative function of $f\left( x \right)$is $I$
So, by the definition of antiderivative, we have:
$I = \int {f\left( x \right)dx} $
$ \Rightarrow I = \int {\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 2}}} \right)dx} $
As, the given function is a function of $\log x$
So, we will substitute $\left( {\log x} \right) = t$,
Now, we have
$t = \log x$
Differentiating both sides with respect to x:
\[ \Rightarrow {\text{dt = d}}\left( {{\text{logx}}} \right)\]
\[ \Rightarrow dt = \dfrac{1}{x}dx\]
\[ \Rightarrow {\text{dx = }}{{\text{e}}^{\text{t}}}{\text{dt}}\]
Now, substituting\[dx = {e^t}dt\], we have
$I = \int {\left( {\log \left( t \right) + {{\left( t \right)}^{ - 2}}} \right){e^t}dt} $
$ \Rightarrow {\text{I = }}\int {\left( {{\text{log}}\left( {\text{t}} \right){\text{ + }}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} \right){{\text{e}}^{\text{t}}}{\text{dt}}} $
$ \Rightarrow {\text{I = }}\int {{{\text{e}}^{\text{t}}}{\text{logtdt + }}\int {{{\text{e}}^{\text{t}}}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} {\text{dt}}} $
Now, adding and subtracting \[\dfrac{{\text{1}}}{{\text{t}}}\] in, \[\left( {\log \left( t \right) + \dfrac{1}{{{t^2}}}} \right)\] in order to make the above term easy for simplification and substitution.
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt + \int {{e^t}\left( {\dfrac{1}{{{t^2}}} - \dfrac{1}{t}} \right)} dt} $
Taking negative sign common from the second part of the above equation and simplify it as below given,
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt - \int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt} $
Now, we know that the following special integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, by using the above property, we have:
$\int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt = } {e^t}\log t + C$ and
\[\int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt = {e^t}\dfrac{1}{t} + B\]
Where C and B are arbitrary constants.
$ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}{\text{logt + C - }}\dfrac{{{{\text{e}}^{\text{t}}}}}{{\text{t}}}{\text{ + B}}$
\[ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}\left( {{\text{logt - }}\dfrac{{\text{1}}}{{\text{t}}}} \right){\text{ + A}}\], where A is an arbitrary constant.
Now, substituting back, $t = \log x$ to find the antiderivative of the given function in terms of x, we have:
\[ \Rightarrow {\text{I = }}{{\text{e}}^{{\text{logx}}}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - \dfrac{{\text{1}}}{{{\text{logx}}}}} \right){\text{ + A}}\]
\[ \Rightarrow {\text{I = x}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - {{\left( {{\text{logx}}} \right)}^{{\text{ - 1}}}}} \right){\text{ + A}}\]
Now, as given, the graph of antiderivative passes through $\left( {e,e} \right)$, therefore substituting x and y both as e
\[ \Rightarrow I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log \left( {\log e} \right) - {{\left( {\log e} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log 1 - 1} \right) + A\]
\[ \Rightarrow 2e = A\]
\[ \Rightarrow A = 2e\]
So, we have \[A = 2e\], substituting \[A = 2e\] in the above result,
Thus, \[I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\]
Hence, the derivative function of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ is\[x\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\], so option (c) is the correct answer.
Note: Students must remember the special integrals carefully and apply them in the problems to make them easy. Ability to convert a given integral into a known integral whose solution is known is also an important thing. The special integral used in the above problem is: \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
We will prove the above integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} \]
\[I = \int {{e^x}f\left( x \right)} + \int {{e^x}f'\left( x \right)} \]
Now, using integrating by parts, using
$\int {uvdx} = u\int {vdx} - \int {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} $
So,
\[\int {{e^x}f\left( x \right)} = f\left( x \right)\int {{e^x}dx} - \int {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}\left( {\int {{e^x}dx} } \right)dx} \]
\[ \Rightarrow \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} - \int {f'\left( x \right){e^x}dx} + C\]
\[ \Rightarrow \int {f'\left( x \right){e^x}dx} + \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} + C\]
\[ \Rightarrow \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Hence, proved
Complete step by step answer:
We have, $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$
Anti-derivative of a function of the inverse function of derivative, or we can say anti-derivative is the integral function.
Let antiderivative function of $f\left( x \right)$is $I$
So, by the definition of antiderivative, we have:
$I = \int {f\left( x \right)dx} $
$ \Rightarrow I = \int {\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 2}}} \right)dx} $
As, the given function is a function of $\log x$
So, we will substitute $\left( {\log x} \right) = t$,
Now, we have
$t = \log x$
Differentiating both sides with respect to x:
\[ \Rightarrow {\text{dt = d}}\left( {{\text{logx}}} \right)\]
\[ \Rightarrow dt = \dfrac{1}{x}dx\]
\[ \Rightarrow {\text{dx = }}{{\text{e}}^{\text{t}}}{\text{dt}}\]
Now, substituting\[dx = {e^t}dt\], we have
$I = \int {\left( {\log \left( t \right) + {{\left( t \right)}^{ - 2}}} \right){e^t}dt} $
$ \Rightarrow {\text{I = }}\int {\left( {{\text{log}}\left( {\text{t}} \right){\text{ + }}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} \right){{\text{e}}^{\text{t}}}{\text{dt}}} $
$ \Rightarrow {\text{I = }}\int {{{\text{e}}^{\text{t}}}{\text{logtdt + }}\int {{{\text{e}}^{\text{t}}}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} {\text{dt}}} $
Now, adding and subtracting \[\dfrac{{\text{1}}}{{\text{t}}}\] in, \[\left( {\log \left( t \right) + \dfrac{1}{{{t^2}}}} \right)\] in order to make the above term easy for simplification and substitution.
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt + \int {{e^t}\left( {\dfrac{1}{{{t^2}}} - \dfrac{1}{t}} \right)} dt} $
Taking negative sign common from the second part of the above equation and simplify it as below given,
$ \Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt - \int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt} $
Now, we know that the following special integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, by using the above property, we have:
$\int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt = } {e^t}\log t + C$ and
\[\int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt = {e^t}\dfrac{1}{t} + B\]
Where C and B are arbitrary constants.
$ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}{\text{logt + C - }}\dfrac{{{{\text{e}}^{\text{t}}}}}{{\text{t}}}{\text{ + B}}$
\[ \Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}\left( {{\text{logt - }}\dfrac{{\text{1}}}{{\text{t}}}} \right){\text{ + A}}\], where A is an arbitrary constant.
Now, substituting back, $t = \log x$ to find the antiderivative of the given function in terms of x, we have:
\[ \Rightarrow {\text{I = }}{{\text{e}}^{{\text{logx}}}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - \dfrac{{\text{1}}}{{{\text{logx}}}}} \right){\text{ + A}}\]
\[ \Rightarrow {\text{I = x}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - {{\left( {{\text{logx}}} \right)}^{{\text{ - 1}}}}} \right){\text{ + A}}\]
Now, as given, the graph of antiderivative passes through $\left( {e,e} \right)$, therefore substituting x and y both as e
\[ \Rightarrow I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log \left( {\log e} \right) - {{\left( {\log e} \right)}^{ - 1}}} \right) + A\]
\[ \Rightarrow e = e\left( {\log 1 - 1} \right) + A\]
\[ \Rightarrow 2e = A\]
\[ \Rightarrow A = 2e\]
So, we have \[A = 2e\], substituting \[A = 2e\] in the above result,
Thus, \[I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\]
Hence, the derivative function of $f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}$ is\[x\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e\], so option (c) is the correct answer.
Note: Students must remember the special integrals carefully and apply them in the problems to make them easy. Ability to convert a given integral into a known integral whose solution is known is also an important thing. The special integral used in the above problem is: \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
We will prove the above integral,
\[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} \]
\[I = \int {{e^x}f\left( x \right)} + \int {{e^x}f'\left( x \right)} \]
Now, using integrating by parts, using
$\int {uvdx} = u\int {vdx} - \int {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} $
So,
\[\int {{e^x}f\left( x \right)} = f\left( x \right)\int {{e^x}dx} - \int {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}\left( {\int {{e^x}dx} } \right)dx} \]
\[ \Rightarrow \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} - \int {f'\left( x \right){e^x}dx} + C\]
\[ \Rightarrow \int {f'\left( x \right){e^x}dx} + \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} + C\]
\[ \Rightarrow \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Thus, \[I = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C\]
Hence, proved
Recently Updated Pages
Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

How can you explain that CCl4 has no dipole moment class 11 chemistry CBSE

Which will undergo SN2 reaction fastest among the following class 11 chemistry CBSE

The values of mass m for which the 100 kg block does class 11 physics CBSE

Why are voluntary muscles called striated muscles class 11 biology CBSE

Trending doubts
The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

What is virtual and erect image ?

How much time does it take to bleed after eating p class 12 biology CBSE

How did Reza Pahlavi differ from Ayatollah Khomein class 12 social science CBSE

Methyl ketone group is identified by which test A Iodoform class 12 chemistry CBSE

