
The angular momentum and the moment of the inertia are respectively:
A. Vector and tensor quantities.
B. Scalar and vector quantities
C. Vector and scalar quantities
D. Vector and vector quantities
Answer
579k+ views
Hint: Angular momentum of a particle is the cross product of its position vector and its linear momentum. Moment of inertia of the particle is the product of the particle’s mass and its perpendicular distance from the axis of rotation.
Complete step by step answer:
Let us first understand what the angular momentum and the moment of inertia are.
When a particle is in a rotational motion, we define its angular momentum and moment of inertia.
Suppose a particle of mass m is rotating about a fixed axis. The angular momentum of the particle is defined as the cross product of its position vector ($\overrightarrow{r}$) and its linear momentum ($\overrightarrow{p}$). The resultant vector of a cross product of two vectors is always a vector. Therefore, angular momentum is a vector quantity.
The value of angular momentum is given as $\overrightarrow{L}=\overrightarrow{r}\times \overrightarrow{p}$ .
The moment of inertia of the particle is defined as the product of its mass and the square of the perpendicular distance of the particle from the fixed axis of rotation.
The value of moment of inertia of a particle of mass m, which is at a perpendicular distance of d from the fixed axis of rotation is given as $I=m{{d}^{2}}$.
Moment of inertia is only a magnitude and has no specific direction. Therefore, it is a scalar quantity.
Therefore, the angular momentum and the moment of the inertia are vector and scalar quantities respectively.
So, the correct answer is “Option C”.
Note: When we deal with angular momentum and moment of inertia of a particle, the most important thing is the axis about which we are measuring both quantities.
Angular momentum and moment of inertia are always measured about an axis.
Without the axis, both the quantities do not have any meaning.
Complete step by step answer:
Let us first understand what the angular momentum and the moment of inertia are.
When a particle is in a rotational motion, we define its angular momentum and moment of inertia.
Suppose a particle of mass m is rotating about a fixed axis. The angular momentum of the particle is defined as the cross product of its position vector ($\overrightarrow{r}$) and its linear momentum ($\overrightarrow{p}$). The resultant vector of a cross product of two vectors is always a vector. Therefore, angular momentum is a vector quantity.
The value of angular momentum is given as $\overrightarrow{L}=\overrightarrow{r}\times \overrightarrow{p}$ .
The moment of inertia of the particle is defined as the product of its mass and the square of the perpendicular distance of the particle from the fixed axis of rotation.
The value of moment of inertia of a particle of mass m, which is at a perpendicular distance of d from the fixed axis of rotation is given as $I=m{{d}^{2}}$.
Moment of inertia is only a magnitude and has no specific direction. Therefore, it is a scalar quantity.
Therefore, the angular momentum and the moment of the inertia are vector and scalar quantities respectively.
So, the correct answer is “Option C”.
Note: When we deal with angular momentum and moment of inertia of a particle, the most important thing is the axis about which we are measuring both quantities.
Angular momentum and moment of inertia are always measured about an axis.
Without the axis, both the quantities do not have any meaning.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

