
The angle of elevation of an electric pole from a point A to the ground is 60° and from a point B towards the pole on the line joining the foot of the pole to the point is 75°. If the distance AB = a, then the height of the pole is :
A.$\dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
B.$a\left( {4 + 2\sqrt 3 } \right)$
C.$\dfrac{{a\left( {2 + \sqrt 3 } \right)}}{2}$
D.$\dfrac{{a\left( {2\sqrt 3 - 3} \right)}}{2}$
Answer
579.9k+ views
Hint: We will first draw the figure of the given condition and then we will use the formula of $\tan \theta = \dfrac{{perpendicular}}{{base}}$ in both the given angles of tan using the formula of tan(a+b) = $\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$ and then from the obtained two equations, we will determine the value of height.
Complete step-by-step answer:
We are given the angle of elevation of an electric pole from a point A from the ground is given as 60° .
Also, the angle of elevation made by point B from the line joining the foot of the pole is 75°.
We are given the distance between the points A and B is AB = a.
Let us draw the figure:
let us assume that distance BC = x
hence, in triangle BCP, $\tan 75^\circ = \dfrac{h}{b}$
Now, tan 75° can be written as $\tan (45^\circ + 30^\circ )$
We can further solve it as $\tan (45^\circ + 30^\circ ) = \dfrac{{\tan 45^\circ + \tan 30^\circ }}{{1 - \tan 45^\circ \tan 30^\circ }}$ using the formula tan (a + b) = $\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$.
$
\Rightarrow \tan ({45^ \circ } + {30^ \circ }) = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - 1(\dfrac{1}{{\sqrt 3 }})}} \\
\Rightarrow \tan {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = \dfrac{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 + 1} \right)}}{{3 - 1}} = \dfrac{{3 + 1 + 2\sqrt 3 }}{2} = \dfrac{{2\left( {2 + \sqrt 3 } \right)}}{2} = \left( {2 + \sqrt 3 } \right) \\
$
Therefore, tan75$^ \circ $= $\dfrac{h}{b} = \left( {2 + \sqrt 3 } \right)$
$ \Rightarrow b = \dfrac{h}{{2 + \sqrt 3 }}$
Now, in triangle ACP, tan 60$^ \circ $= $\dfrac{h}{{a + b}}$
Substituting the values of b and tan 60$^ \circ $, we get
$
\Rightarrow \sqrt 3 = \dfrac{h}{{a + b}} \\
\Rightarrow h = \sqrt 3 \left( {a + b} \right) \\
\Rightarrow h = \sqrt 3 \left( {a + \dfrac{h}{{2 + \sqrt 3 }}} \right) \\
\Rightarrow h - \dfrac{{h\sqrt 3 }}{{2 + \sqrt 3 }} = a\sqrt 3 \\
\Rightarrow h\left( {\dfrac{{2 + \sqrt 3 - \sqrt 3 }}{{2 + \sqrt 3 }}} \right) = a\sqrt 3 \\
$
Simplifying it further for the value of h, we get
$\therefore h = \dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
Therefore, the height of the pole h is found to be $\dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
Note: You should not get confused while calculating the tan75$^ \circ $with tan45$^ \circ $+ tan30$^ \circ $ instead of tan(45$^ \circ $+ tan30$^ \circ $). Be careful while simplifying for h because there are further calculations based on h value. If h value is wrong the final answer will come wrong.
Complete step-by-step answer:
We are given the angle of elevation of an electric pole from a point A from the ground is given as 60° .
Also, the angle of elevation made by point B from the line joining the foot of the pole is 75°.
We are given the distance between the points A and B is AB = a.
Let us draw the figure:
let us assume that distance BC = x
hence, in triangle BCP, $\tan 75^\circ = \dfrac{h}{b}$
Now, tan 75° can be written as $\tan (45^\circ + 30^\circ )$
We can further solve it as $\tan (45^\circ + 30^\circ ) = \dfrac{{\tan 45^\circ + \tan 30^\circ }}{{1 - \tan 45^\circ \tan 30^\circ }}$ using the formula tan (a + b) = $\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$.
$
\Rightarrow \tan ({45^ \circ } + {30^ \circ }) = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - 1(\dfrac{1}{{\sqrt 3 }})}} \\
\Rightarrow \tan {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = \dfrac{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 + 1} \right)}}{{3 - 1}} = \dfrac{{3 + 1 + 2\sqrt 3 }}{2} = \dfrac{{2\left( {2 + \sqrt 3 } \right)}}{2} = \left( {2 + \sqrt 3 } \right) \\
$
Therefore, tan75$^ \circ $= $\dfrac{h}{b} = \left( {2 + \sqrt 3 } \right)$
$ \Rightarrow b = \dfrac{h}{{2 + \sqrt 3 }}$
Now, in triangle ACP, tan 60$^ \circ $= $\dfrac{h}{{a + b}}$
Substituting the values of b and tan 60$^ \circ $, we get
$
\Rightarrow \sqrt 3 = \dfrac{h}{{a + b}} \\
\Rightarrow h = \sqrt 3 \left( {a + b} \right) \\
\Rightarrow h = \sqrt 3 \left( {a + \dfrac{h}{{2 + \sqrt 3 }}} \right) \\
\Rightarrow h - \dfrac{{h\sqrt 3 }}{{2 + \sqrt 3 }} = a\sqrt 3 \\
\Rightarrow h\left( {\dfrac{{2 + \sqrt 3 - \sqrt 3 }}{{2 + \sqrt 3 }}} \right) = a\sqrt 3 \\
$
Simplifying it further for the value of h, we get
$\therefore h = \dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
Therefore, the height of the pole h is found to be $\dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
Note: You should not get confused while calculating the tan75$^ \circ $with tan45$^ \circ $+ tan30$^ \circ $ instead of tan(45$^ \circ $+ tan30$^ \circ $). Be careful while simplifying for h because there are further calculations based on h value. If h value is wrong the final answer will come wrong.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

