The AM, GM and HM in any series are equal then
A). The distribution is symmetric
B). All the values are same
C). The distribution is unimodal
D). None of these
Answer
Verified
510.9k+ views
Hint: Here, we will use the formulas for AM, GM and HM of two numbers.
Let us suppose two numbers in any series be $a$and $b$
Given, ${\text{AM}} = {\text{GM}} = {\text{HM}}$
As we know that Arithmetic mean of two numbers $a$and $b$ is ${\text{AM}} = \dfrac{{a + b}}{2}$
Geometric mean of two numbers $a$and $b$ is ${\text{GM}} = \sqrt {ab} $
Harmonic mean of two numbers $a$and $b$ is ${\text{HM}} = \dfrac{{2ab}}{{a + b}}$
Now, consider ${\text{AM}} = {\text{GM}} \Rightarrow \dfrac{{a + b}}{2} = \sqrt {ab} $
Squaring above equation both sides we get
\[
\Rightarrow {\left( {\dfrac{{a + b}}{2}} \right)^2} = ab \Rightarrow \dfrac{{{a^2} + {b^2} + 2ab}}{4} = ab \Rightarrow {a^2} + {b^2} + 2ab = 4ab \\
\Rightarrow {a^2} + {b^2} - 2ab = 0 \Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
\]
Now, consider $
{\text{AM}} = {\text{HM}} \Rightarrow \dfrac{{a + b}}{2} = \dfrac{{2ab}}{{a + b}} \Rightarrow {\left( {a + b} \right)^2} = 4ab \Rightarrow {a^2} + {b^2} + 2ab = 4ab \\
\Rightarrow {a^2} + {b^2} - 2ab = 0 \Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
$
Now, consider ${\text{GM}} = {\text{HM}} \Rightarrow \sqrt {ab} = \dfrac{{2ab}}{{a + b}} \Rightarrow \left( {a + b} \right)\sqrt {ab} = 2ab$
Squaring above equation both sides we get
$
\Rightarrow ab{\left( {a + b} \right)^2} = {\left( {2ab} \right)^2} \Rightarrow {\left( {a + b} \right)^2} = 4ab \Rightarrow {a^2} + {b^2} - 2ab = 0 \\
\Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
$
Hence, considering all the possibilities we are always getting that both the numbers in the given series are equal to each other. So, in general we can say that all the values are equal in the series where ${\text{AM}} = {\text{GM}} = {\text{HM}}$.
Therefore, option B is correct.
Note- In these types of problems, we consider any two numbers and apply the formulas for AM, GM and HM in order to find the relation between the assumed numbers.
Let us suppose two numbers in any series be $a$and $b$
Given, ${\text{AM}} = {\text{GM}} = {\text{HM}}$
As we know that Arithmetic mean of two numbers $a$and $b$ is ${\text{AM}} = \dfrac{{a + b}}{2}$
Geometric mean of two numbers $a$and $b$ is ${\text{GM}} = \sqrt {ab} $
Harmonic mean of two numbers $a$and $b$ is ${\text{HM}} = \dfrac{{2ab}}{{a + b}}$
Now, consider ${\text{AM}} = {\text{GM}} \Rightarrow \dfrac{{a + b}}{2} = \sqrt {ab} $
Squaring above equation both sides we get
\[
\Rightarrow {\left( {\dfrac{{a + b}}{2}} \right)^2} = ab \Rightarrow \dfrac{{{a^2} + {b^2} + 2ab}}{4} = ab \Rightarrow {a^2} + {b^2} + 2ab = 4ab \\
\Rightarrow {a^2} + {b^2} - 2ab = 0 \Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
\]
Now, consider $
{\text{AM}} = {\text{HM}} \Rightarrow \dfrac{{a + b}}{2} = \dfrac{{2ab}}{{a + b}} \Rightarrow {\left( {a + b} \right)^2} = 4ab \Rightarrow {a^2} + {b^2} + 2ab = 4ab \\
\Rightarrow {a^2} + {b^2} - 2ab = 0 \Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
$
Now, consider ${\text{GM}} = {\text{HM}} \Rightarrow \sqrt {ab} = \dfrac{{2ab}}{{a + b}} \Rightarrow \left( {a + b} \right)\sqrt {ab} = 2ab$
Squaring above equation both sides we get
$
\Rightarrow ab{\left( {a + b} \right)^2} = {\left( {2ab} \right)^2} \Rightarrow {\left( {a + b} \right)^2} = 4ab \Rightarrow {a^2} + {b^2} - 2ab = 0 \\
\Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
$
Hence, considering all the possibilities we are always getting that both the numbers in the given series are equal to each other. So, in general we can say that all the values are equal in the series where ${\text{AM}} = {\text{GM}} = {\text{HM}}$.
Therefore, option B is correct.
Note- In these types of problems, we consider any two numbers and apply the formulas for AM, GM and HM in order to find the relation between the assumed numbers.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE