
The activity of a radioactive isotope falls to 12.5% in 90 days. Compute the half-life and decay constant of the isotope.
Answer
579.3k+ views
Hint: All nuclear reactions follow first-order kinetics. The half-life of the reaction is equivalent to the half-life of isotope and the decay constant of the reaction is equivalent to the rate constant of the reaction. Use the integrated rate law of first-order kinetics and first find out the decay constant and then find out the half-life of the isotope.
Complete step by step solution:
- Nuclear reactions follow first-order kinetics.
- Let us assume ‘x’ amount of radioactive isotope was present at t=0s. According to the question, the activity of a radioactive isotope falls to 12.5% in 90 days. Therefore, $\dfrac{12.5}{100}\times x=0.125x$ of isotope is left behind after t=90days.
- From the integrated rate law of first order kinetics, we have the formula,
\[\lambda =\dfrac{2.303}{t}{{\log }_{10}}\dfrac{\left[ {{N}_{0}} \right]}{\left[ N \right]}\] where $\lambda $ is the decay constant and t is the time. ${{N}_{0}}$ is the number of radioactive isotopes at t=0 and N is the number of radioactive isotopes at time t.
- Therefore, substituting the values in the above equation we obtain,
\[\lambda =\dfrac{2.303}{90}{{\log }_{10}}\dfrac{x}{0.125x}=0.0231\,\,day{{s}^{-1}}\]
- Now, we know the formula to calculate half-life for a first order reaction. That is,
\[{{t}_{{}^{1}/{}_{2}}}=\dfrac{0.693}{\lambda }\]
\[\therefore {{t}_{{}^{1}/{}_{2}}}=\dfrac{0.693}{0.0231}=30\,days\]
Therefore, the half-life of the radioactive isotope is 30 days and the decay constant is \[0.0231\,\,day{{s}^{-1}}\].
Note: Remember all the nuclear reactions are first-order reactions. So, to calculate the half-life and the decay constant, integrated rate law of first-order kinetics is used.
Complete step by step solution:
- Nuclear reactions follow first-order kinetics.
- Let us assume ‘x’ amount of radioactive isotope was present at t=0s. According to the question, the activity of a radioactive isotope falls to 12.5% in 90 days. Therefore, $\dfrac{12.5}{100}\times x=0.125x$ of isotope is left behind after t=90days.
- From the integrated rate law of first order kinetics, we have the formula,
\[\lambda =\dfrac{2.303}{t}{{\log }_{10}}\dfrac{\left[ {{N}_{0}} \right]}{\left[ N \right]}\] where $\lambda $ is the decay constant and t is the time. ${{N}_{0}}$ is the number of radioactive isotopes at t=0 and N is the number of radioactive isotopes at time t.
- Therefore, substituting the values in the above equation we obtain,
\[\lambda =\dfrac{2.303}{90}{{\log }_{10}}\dfrac{x}{0.125x}=0.0231\,\,day{{s}^{-1}}\]
- Now, we know the formula to calculate half-life for a first order reaction. That is,
\[{{t}_{{}^{1}/{}_{2}}}=\dfrac{0.693}{\lambda }\]
\[\therefore {{t}_{{}^{1}/{}_{2}}}=\dfrac{0.693}{0.0231}=30\,days\]
Therefore, the half-life of the radioactive isotope is 30 days and the decay constant is \[0.0231\,\,day{{s}^{-1}}\].
Note: Remember all the nuclear reactions are first-order reactions. So, to calculate the half-life and the decay constant, integrated rate law of first-order kinetics is used.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

