Answer
Verified
411.6k+ views
Hint: We will use the basic definition of acceleration in order to solve this question which states that the rate of change in velocity of an object gives the acceleration. This is a vector quantity which is having both magnitude and direction. This will help you in solving this question.
Complete step-by-step solution
The acceleration can be figured out by taking the rate of variation of the velocity of a body with respect to the time taken. When a body is moving from one point to another at a specific time, its velocity will change. Because a body is going from one point to another and the change in velocity does not keep on constant. Therefore the slope of the velocity-time curve will be equivalent to the tangent of the angle between the curve and time axis. This will be comparable to the first derivative of the velocity.
$ \tan \theta = \dfrac{{dv}}{{dt}} $
where $ \theta $ be the angle between the curve and the time axis. For that reason, the slope of a velocity-time graph will be the acceleration. This has been mentioned as an option (A).
So, the correct answer is option (A) Slope of the velocity-time graph.
Note
The slope of the line on a velocity-time graph depicts valuable information about the acceleration of the body. When the acceleration is zero, then the slope also tends to be zero. That means the horizontal line. If the acceleration is positive, the slope will also be positive. Also, recall that the area under the velocity-time graph provides the distance covered by the object.
Complete step-by-step solution
The acceleration can be figured out by taking the rate of variation of the velocity of a body with respect to the time taken. When a body is moving from one point to another at a specific time, its velocity will change. Because a body is going from one point to another and the change in velocity does not keep on constant. Therefore the slope of the velocity-time curve will be equivalent to the tangent of the angle between the curve and time axis. This will be comparable to the first derivative of the velocity.
$ \tan \theta = \dfrac{{dv}}{{dt}} $
where $ \theta $ be the angle between the curve and the time axis. For that reason, the slope of a velocity-time graph will be the acceleration. This has been mentioned as an option (A).
So, the correct answer is option (A) Slope of the velocity-time graph.
Note
The slope of the line on a velocity-time graph depicts valuable information about the acceleration of the body. When the acceleration is zero, then the slope also tends to be zero. That means the horizontal line. If the acceleration is positive, the slope will also be positive. Also, recall that the area under the velocity-time graph provides the distance covered by the object.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations