
The 9th term of an AP is 499 and 499th term is 9. The term which is equal to zero is.
A.501th
B.502th
C.508th
D.None of these
Answer
581.4k+ views
Hint: As given terms are in AP. We will use the formula of the nth term of an A.P i.e a+(n-1)d , where a is the first term and d is the common difference .
Complete step-by-step answer:
Let the first term of AP = a.
and the common difference = d.
given that $a_9$=499
Here n value is 9. Put value in a+(n-1)d
$a_9$ = a + 8d = 499
Therefore, a + 8d = 499 (1)
${a}_{499}$=9
${a}_{499}$ = a + 498d = 9.
Therefore, a + 498d = 9 (2)
Subtracting eq(1) from eq(2)
a+498d-a-8d=9-499
$\begin{array}{l}
490d = - 490\\
d = \dfrac{{ - 490}}{{490}} = - 1
\end{array}$
Therefore, common difference, d = -1.
Substituting the value of d in eq(1).
$\begin{array}{l}
\Rightarrow a + 8d = 499\\
\Rightarrow a + \left( {8*(- 1)} \right) = 499.\\
\Rightarrow a = 499 + 8\\
\Rightarrow a = 507
\end{array}$
Therefore, first term, a = 507.
The required term = an
and an = 0
$a + (n - 1)d = 0.$
$ \Rightarrow $ Putting value of a and d
$\Rightarrow 507 + (n -1 ) - 1 = 0$
$\Rightarrow 507 = n - 1$
$\Rightarrow n = 507 + 1$
$\Rightarrow n = 508$
Hence, the 508th term is equal to zero.
Note: In this type of question, use the formula to get the first and common difference terms. Then proceed with the correct formula to find the required answer.
Complete step-by-step answer:
Let the first term of AP = a.
and the common difference = d.
given that $a_9$=499
Here n value is 9. Put value in a+(n-1)d
$a_9$ = a + 8d = 499
Therefore, a + 8d = 499 (1)
${a}_{499}$=9
${a}_{499}$ = a + 498d = 9.
Therefore, a + 498d = 9 (2)
Subtracting eq(1) from eq(2)
a+498d-a-8d=9-499
$\begin{array}{l}
490d = - 490\\
d = \dfrac{{ - 490}}{{490}} = - 1
\end{array}$
Therefore, common difference, d = -1.
Substituting the value of d in eq(1).
$\begin{array}{l}
\Rightarrow a + 8d = 499\\
\Rightarrow a + \left( {8*(- 1)} \right) = 499.\\
\Rightarrow a = 499 + 8\\
\Rightarrow a = 507
\end{array}$
Therefore, first term, a = 507.
The required term = an
and an = 0
$a + (n - 1)d = 0.$
$ \Rightarrow $ Putting value of a and d
$\Rightarrow 507 + (n -1 ) - 1 = 0$
$\Rightarrow 507 = n - 1$
$\Rightarrow n = 507 + 1$
$\Rightarrow n = 508$
Hence, the 508th term is equal to zero.
Note: In this type of question, use the formula to get the first and common difference terms. Then proceed with the correct formula to find the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

