
The ${{7}^{th}}$ term of an A.P is $32$ and its ${{13}^{th}}$ term is $62$. Find the A.P.
Answer
607.5k+ views
Hint: Use the ${{n}^{th}}$ term of A.P and solve it. You will get two equations. Subtract the equations you will get the value of $d$ and then find the value of $a$ by substituting $d$. You will get a series which is an A.P.
Arithmetic Progression (A.P) is a sequence of numbers in a particular order. If we observe in our regular lives, we come across progression quite often. For example, roll numbers of a class, days in a week, or months in a year This pattern of series and sequences has been generalized in Mathematics as progressions. Let us learn here AP definition, important terms such as common difference, the first term of the series, nth term and sum of nth term formulas along with solved questions based on them.
It is a mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as A.P.
The fixed number that must be added to any term of an A.P to get the next term is known as the common difference of the A.P.
An arithmetic sequence or progression is defined as a sequence of numbers in which for every pair of consecutive terms, the second number is obtained by adding a fixed number to the first one.
${{n}^{th}}$term of A.P, ${{a}_{n}}=a+(n-1)d$
Where,
$a=$ First-term
$d=$ Common difference
$n=$ number of terms
${{a}_{n}}={{n}^{th}}$ term
So we have given in the question that ${{7}^{th}}$ term of an A.P is $32$.
So we get, ${{a}_{7}}=32$
${{a}_{7}}=a+(7-1)d$
$32=a+6d$ .…… (1)
Now we have been given that the ${{13}^{th}}$ term is $62$.
${{a}_{13}}=62$,
${{a}_{13}}=a+(13-1)d$
$62=a+12d$ …… (2)
So subtracting (1) from (2), we get,
$62-32=(a+12d)-(a+6d)$
So simplifying in a simple manner we get,
$30=d6$
So we get $d=5$.
Now substituting $d=5$ in (1).
$32=a+6(5)$
$32=a+30$
$a=2$
So we get,
First-term $=a=2$ and common difference $=d=5$.
So the series forming an A.P is $2,7,12,17,.......$
Note: Carefully read the question. Properly use the term of A.P sometimes mistakes occur while solving or substituting the values. Be careful while subtracting no term should be missing.
Arithmetic Progression (A.P) is a sequence of numbers in a particular order. If we observe in our regular lives, we come across progression quite often. For example, roll numbers of a class, days in a week, or months in a year This pattern of series and sequences has been generalized in Mathematics as progressions. Let us learn here AP definition, important terms such as common difference, the first term of the series, nth term and sum of nth term formulas along with solved questions based on them.
It is a mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as A.P.
The fixed number that must be added to any term of an A.P to get the next term is known as the common difference of the A.P.
An arithmetic sequence or progression is defined as a sequence of numbers in which for every pair of consecutive terms, the second number is obtained by adding a fixed number to the first one.
${{n}^{th}}$term of A.P, ${{a}_{n}}=a+(n-1)d$
Where,
$a=$ First-term
$d=$ Common difference
$n=$ number of terms
${{a}_{n}}={{n}^{th}}$ term
So we have given in the question that ${{7}^{th}}$ term of an A.P is $32$.
So we get, ${{a}_{7}}=32$
${{a}_{7}}=a+(7-1)d$
$32=a+6d$ .…… (1)
Now we have been given that the ${{13}^{th}}$ term is $62$.
${{a}_{13}}=62$,
${{a}_{13}}=a+(13-1)d$
$62=a+12d$ …… (2)
So subtracting (1) from (2), we get,
$62-32=(a+12d)-(a+6d)$
So simplifying in a simple manner we get,
$30=d6$
So we get $d=5$.
Now substituting $d=5$ in (1).
$32=a+6(5)$
$32=a+30$
$a=2$
So we get,
First-term $=a=2$ and common difference $=d=5$.
So the series forming an A.P is $2,7,12,17,.......$
Note: Carefully read the question. Properly use the term of A.P sometimes mistakes occur while solving or substituting the values. Be careful while subtracting no term should be missing.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

