Answer
Verified
405.3k+ views
Hint:here, when the ice is mixed into water, the heat will be transferred from water to ice. This hat will melt the ice into the water. Therefore, the energy balanced equation will be Latent heat to convert ice at $0^\circ \,C$ into water at $0^\circ \,C$ $ + $ heating of water from $0^\circ \,C$ to $T^\circ \,C$ $ = $ cooling of hot water from $80^\circ \,C$ to $T^\circ \,C$.
Formula used:
Here, we will use the balanced equation to calculate the temperature of the mixture, which is given below
${m_1}H + {m_1}{c_1}\Delta T = {m_2}{c_2}\Delta T$
Here, ${m_1}$ is the mass of water, ${m_2}$ is the mass of ice, ${c_1}$ is the specific heat of water, ${c_2}$ is the specific heat of ice, $\Delta T$ is the change in temperature and $H$ is the latent heat of fusion.
Complete step by step answer:
Here, in the question, $$540\,g$$ of ice at $0^\circ \,C$ is mixed with $540\,g$ of water at $80^\circ \,C$. Therefore, latent heat of fusion or latent heat to convert ice into water, $H = 80^\circ C$
Now, the specific heat of water, ${c_1} = 1^\circ \,C$
Also, the specific heat of ice, ${c_2} = 0.5^\circ \,C$
As we know that when we mix the ice into water, the heat will transfer from water at $80^\circ \,C$ to the ice at $0^\circ \,C$ till the thermodynamic equilibrium will occur.
Since ice is saturated, therefore, it will absorb latent heat so that it can be converted into the water.
Let the final temperature of the mixture is, $ = \,T^\circ C$. Therefore, the energy balanced equation will be latent heat to convert ice at $0^\circ \,C$ into water at $0^\circ \,C$ $ + $ heating of water from $0^\circ \,C$ to $T^\circ \,C$ $ = $ cooling of hot water from $80^\circ \,C$ to $T^\circ \,C$
$ \Rightarrow \,{m_1}H + {m_1}{c_1}\Delta T = {m_2}{c_2}\Delta T$
$ \Rightarrow \,\left( {540 \times 80} \right) + \left( {540 \times 1 \times \left( {T - 0} \right)} \right) = \left( {540 \times 1 \times \left( {80 - T} \right)} \right)$
$ \Rightarrow 43200 + 540\,T = 43200 - 540\,T$
$ \Rightarrow \,540\,T = - 540\,T$
$ \Rightarrow \,1080\,T = 0$
$ \therefore \,T = 0$
Therefore, the temperature of the mixture will be $0^\circ \,C$.
Hence, option A is the correct option.
Note:Here, the specific heat of water and the specific heat of ice will be at room temperature. Also, the ice will be converted to water at room temperature. Also, we can say that in the above equation the heat lost by the water is equal to the heat gained by the ice. This is because the heat lost by the water is absorbed by the ice to get converted into the water.
Formula used:
Here, we will use the balanced equation to calculate the temperature of the mixture, which is given below
${m_1}H + {m_1}{c_1}\Delta T = {m_2}{c_2}\Delta T$
Here, ${m_1}$ is the mass of water, ${m_2}$ is the mass of ice, ${c_1}$ is the specific heat of water, ${c_2}$ is the specific heat of ice, $\Delta T$ is the change in temperature and $H$ is the latent heat of fusion.
Complete step by step answer:
Here, in the question, $$540\,g$$ of ice at $0^\circ \,C$ is mixed with $540\,g$ of water at $80^\circ \,C$. Therefore, latent heat of fusion or latent heat to convert ice into water, $H = 80^\circ C$
Now, the specific heat of water, ${c_1} = 1^\circ \,C$
Also, the specific heat of ice, ${c_2} = 0.5^\circ \,C$
As we know that when we mix the ice into water, the heat will transfer from water at $80^\circ \,C$ to the ice at $0^\circ \,C$ till the thermodynamic equilibrium will occur.
Since ice is saturated, therefore, it will absorb latent heat so that it can be converted into the water.
Let the final temperature of the mixture is, $ = \,T^\circ C$. Therefore, the energy balanced equation will be latent heat to convert ice at $0^\circ \,C$ into water at $0^\circ \,C$ $ + $ heating of water from $0^\circ \,C$ to $T^\circ \,C$ $ = $ cooling of hot water from $80^\circ \,C$ to $T^\circ \,C$
$ \Rightarrow \,{m_1}H + {m_1}{c_1}\Delta T = {m_2}{c_2}\Delta T$
$ \Rightarrow \,\left( {540 \times 80} \right) + \left( {540 \times 1 \times \left( {T - 0} \right)} \right) = \left( {540 \times 1 \times \left( {80 - T} \right)} \right)$
$ \Rightarrow 43200 + 540\,T = 43200 - 540\,T$
$ \Rightarrow \,540\,T = - 540\,T$
$ \Rightarrow \,1080\,T = 0$
$ \therefore \,T = 0$
Therefore, the temperature of the mixture will be $0^\circ \,C$.
Hence, option A is the correct option.
Note:Here, the specific heat of water and the specific heat of ice will be at room temperature. Also, the ice will be converted to water at room temperature. Also, we can say that in the above equation the heat lost by the water is equal to the heat gained by the ice. This is because the heat lost by the water is absorbed by the ice to get converted into the water.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE