Answer
Verified
491.7k+ views
Hint: Use the general (nth) term of A.P. which is ${T_n} = a + \left( {n - 1} \right)d$. Satisfy the conditions given in the question and find the value of $a$ and $d$.
Complete step-by-step answer:
We know that the general (nth) term of A.P. is ${T_n} = a + \left( {n - 1} \right)d$ where $a$is the first term and $d$is the common difference.
And according to the question, the 17th term of an A.P. is 5 more than twice its 8th term. So, we have:
$ \Rightarrow {T_{17}} = 2{T_8} + 5$
Using the formula of ${T_n}$, we’ll get:
$
\Rightarrow a + \left( {17 - 1} \right)d = 2\left[ {a + \left( {8 - 1} \right)d} \right] + 5, \\
\Rightarrow a + 16d = 2a + 14d + 5, \\
\Rightarrow a - 2d = - 5 .....(i) \\
$
Further, it is given that the 11th term of the A.P. is 43. So, we have:
$
\Rightarrow a + \left( {11 - 1} \right)d = 43, \\
\Rightarrow a + 10d = 43 .....(ii) \\
$
Now, subtracting equation $(ii)$ from equation $(i)$ we’ll get:
$
\Rightarrow a - 2d - a - 10d = - 5 - 43, \\
\Rightarrow - 12d = - 48, \\
\Rightarrow d = 4 \\
$
Putting the value of d in equation $(i)$, we’ll get:
$
\Rightarrow a - 2 \times \left( 4 \right) = - 5, \\
\Rightarrow a - 8 = - 5, \\
\Rightarrow a = 3 \\
$
Putting values of $a$ and $d$in general equation, we’ll get:
$
\Rightarrow {T_n} = a + \left( {n - 1} \right)d, \\
\Rightarrow {T_n} = 3 + \left( {n - 1} \right) \times 4, \\
\Rightarrow {T_n} = 3 + 4n - 4, \\
$
$ \Rightarrow {T_n} = 4n - 1$
Thus, the nth term of A.P. is $4n - 1$.
Note: The general term of an A.P. is always a 1 degree polynomial in $n$ while the sum of first $n$ terms on the A.P. is a 2 degree polynomial in $n$.
Complete step-by-step answer:
We know that the general (nth) term of A.P. is ${T_n} = a + \left( {n - 1} \right)d$ where $a$is the first term and $d$is the common difference.
And according to the question, the 17th term of an A.P. is 5 more than twice its 8th term. So, we have:
$ \Rightarrow {T_{17}} = 2{T_8} + 5$
Using the formula of ${T_n}$, we’ll get:
$
\Rightarrow a + \left( {17 - 1} \right)d = 2\left[ {a + \left( {8 - 1} \right)d} \right] + 5, \\
\Rightarrow a + 16d = 2a + 14d + 5, \\
\Rightarrow a - 2d = - 5 .....(i) \\
$
Further, it is given that the 11th term of the A.P. is 43. So, we have:
$
\Rightarrow a + \left( {11 - 1} \right)d = 43, \\
\Rightarrow a + 10d = 43 .....(ii) \\
$
Now, subtracting equation $(ii)$ from equation $(i)$ we’ll get:
$
\Rightarrow a - 2d - a - 10d = - 5 - 43, \\
\Rightarrow - 12d = - 48, \\
\Rightarrow d = 4 \\
$
Putting the value of d in equation $(i)$, we’ll get:
$
\Rightarrow a - 2 \times \left( 4 \right) = - 5, \\
\Rightarrow a - 8 = - 5, \\
\Rightarrow a = 3 \\
$
Putting values of $a$ and $d$in general equation, we’ll get:
$
\Rightarrow {T_n} = a + \left( {n - 1} \right)d, \\
\Rightarrow {T_n} = 3 + \left( {n - 1} \right) \times 4, \\
\Rightarrow {T_n} = 3 + 4n - 4, \\
$
$ \Rightarrow {T_n} = 4n - 1$
Thus, the nth term of A.P. is $4n - 1$.
Note: The general term of an A.P. is always a 1 degree polynomial in $n$ while the sum of first $n$ terms on the A.P. is a 2 degree polynomial in $n$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE