Answer
Verified
426.3k+ views
Hint: In order to test the power series for convergence, we can use root test or ratio test, since the convergence of a power series depends on the value of $x$. Therefore, it’s up to us which test we have to use for testing a power series for convergence.
Complete step-by-step solution:
Let us understand with the help of an example.
The interval of convergence of a power series is the set of all x-values for which the power series converges.
Let us find the interval of convergence of:
\[\sum\limits_{n=0}^{\infty }{\dfrac{{{x}^{n}}}{n}}\]
Now, we will check by Ratio test, so we get:
\[\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|\]
\[=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n+1}}}{n+1}.\dfrac{n}{{{x}^{n}}} \right|\]
So on further simplifying, we get:
\[=\left| x \right|\displaystyle \lim_{n \to \infty }\dfrac{n}{n+1}\]
Now, we will apply limit rule as:
$=\left| x \right|.1$
Now, we will apply range to check the power series.
Therefore, we get:
$=\left| x \right|< 1\Rightarrow -1< x < 1$
which means that the power series converges at least on \[~\left( -1,1 \right)\].
Now, we need to check its convergence at the endpoints:
$x=-1$ and
$x=1$
If $x=-1$, the power series becomes the alternating harmonic series, so we get:
\[\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{n}}\]
which is convergent.
So we should include $x=1$:
If $x=1$, the power series becomes the harmonic series, so we get:
\[\sum\limits_{n=0}^{\infty }{\dfrac{1}{n}}\]
which is divergent. So, $x=1$ should be excluded.
Hence, the interval of convergence is $\left[ -1,1 \right]$
Note: You can think of a power series as a polynomial function of infinite degree since it looks like this:
$\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n}}={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+{{a}_{3}}{{x}^{3}}+...}$
While checking the endpoints of the interval of convergence, they must be checked separately as the Root test and Ratio test are inconclusive here.
To check convergence at the endpoints, we put each endpoint in for $x$, giving us a normal series (no longer a power series) to consider.
Complete step-by-step solution:
Let us understand with the help of an example.
The interval of convergence of a power series is the set of all x-values for which the power series converges.
Let us find the interval of convergence of:
\[\sum\limits_{n=0}^{\infty }{\dfrac{{{x}^{n}}}{n}}\]
Now, we will check by Ratio test, so we get:
\[\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|\]
\[=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n+1}}}{n+1}.\dfrac{n}{{{x}^{n}}} \right|\]
So on further simplifying, we get:
\[=\left| x \right|\displaystyle \lim_{n \to \infty }\dfrac{n}{n+1}\]
Now, we will apply limit rule as:
$=\left| x \right|.1$
Now, we will apply range to check the power series.
Therefore, we get:
$=\left| x \right|< 1\Rightarrow -1< x < 1$
which means that the power series converges at least on \[~\left( -1,1 \right)\].
Now, we need to check its convergence at the endpoints:
$x=-1$ and
$x=1$
If $x=-1$, the power series becomes the alternating harmonic series, so we get:
\[\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{n}}\]
which is convergent.
So we should include $x=1$:
If $x=1$, the power series becomes the harmonic series, so we get:
\[\sum\limits_{n=0}^{\infty }{\dfrac{1}{n}}\]
which is divergent. So, $x=1$ should be excluded.
Hence, the interval of convergence is $\left[ -1,1 \right]$
Note: You can think of a power series as a polynomial function of infinite degree since it looks like this:
$\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n}}={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+{{a}_{3}}{{x}^{3}}+...}$
While checking the endpoints of the interval of convergence, they must be checked separately as the Root test and Ratio test are inconclusive here.
To check convergence at the endpoints, we put each endpoint in for $x$, giving us a normal series (no longer a power series) to consider.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE