# How many terms of G.P \[3,{{3}^{2}},{{3}^{3}}.....\] are needed to give the sum 120?

Answer

Verified

326.4k+ views

Hint: We know that the given terms are in G.P. So we will use the formula of the sum of n terms of G.P that is \[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\] and equate it to 120 to get the value of n that is the number of terms.

Here, we are given a series \[3,{{3}^{2}},{{3}^{3}}.....\] such that the sum of the terms is 120. We have to find the number of terms in the given series.

First of all, let us take the total number of terms as n.

We know that in geometric progression (G.P), the terms are as follows:

\[a,ar,a{{r}^{2}},a{{r}^{3}}.....\]

where ‘a’ is the first term and ‘r’ is the common ratio.

Now by substituting a = r = 3 in the above terms, we get the new G.P as,

\[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}......\text{n terms}\]

This is the series given in the question. So now, we know that the series which is given in the question is in G.P.

We know that the sum of n terms of G.P is,

\[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\]

For series, \[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}......\text{n terms}\], we know that a = 3 and r = 3. So, by substituting the value of a and r in the above equation, we get,

\[{{S}_{n}}=\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( 1-3 \right)}\]

We are given the sum of terms of this series is 120. So by substituting \[{{S}_{n}}=120\] in the above equation, we get,

\[120=\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( 1-3 \right)}\]

Or, \[\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( -2 \right)}=120\]

By multiplying \[\left( \dfrac{-2}{3} \right)\] on both the sides of the above equation, we get,

\[\left( \dfrac{-2}{3} \right)\left( \dfrac{3}{-2} \right)\left( 1-{{3}^{n}} \right)=\left( \dfrac{-2}{3} \right)\left( 120 \right)\]

Or, \[\left( 1-{{3}^{n}} \right)=-80\]

Or, \[{{3}^{n}}=80+1\]

\[\Rightarrow {{3}^{n}}=81\]

We can write \[81={{3}^{4}}\]. So, we get,

\[\Rightarrow {{3}^{n}}={{3}^{4}}\]

We know that when \[{{a}^{p}}={{a}^{q}}\] then p = q for all the values of ‘a’ except -1, 0 and 1. By using this in the above equation, we get n = 4.

So our total terms are 4 and that are \[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}\] or 3, 9, 27, 81.

Note: Here students can cross-check their answer as follows:

We are given that the sum of the terms is 120. We have got the terms as 3, 9, 27, 81. So their sum would be 3 + 9 + 27 + 81 = 120. So, our answer is correct.

Here, we are given a series \[3,{{3}^{2}},{{3}^{3}}.....\] such that the sum of the terms is 120. We have to find the number of terms in the given series.

First of all, let us take the total number of terms as n.

We know that in geometric progression (G.P), the terms are as follows:

\[a,ar,a{{r}^{2}},a{{r}^{3}}.....\]

where ‘a’ is the first term and ‘r’ is the common ratio.

Now by substituting a = r = 3 in the above terms, we get the new G.P as,

\[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}......\text{n terms}\]

This is the series given in the question. So now, we know that the series which is given in the question is in G.P.

We know that the sum of n terms of G.P is,

\[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\]

For series, \[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}......\text{n terms}\], we know that a = 3 and r = 3. So, by substituting the value of a and r in the above equation, we get,

\[{{S}_{n}}=\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( 1-3 \right)}\]

We are given the sum of terms of this series is 120. So by substituting \[{{S}_{n}}=120\] in the above equation, we get,

\[120=\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( 1-3 \right)}\]

Or, \[\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( -2 \right)}=120\]

By multiplying \[\left( \dfrac{-2}{3} \right)\] on both the sides of the above equation, we get,

\[\left( \dfrac{-2}{3} \right)\left( \dfrac{3}{-2} \right)\left( 1-{{3}^{n}} \right)=\left( \dfrac{-2}{3} \right)\left( 120 \right)\]

Or, \[\left( 1-{{3}^{n}} \right)=-80\]

Or, \[{{3}^{n}}=80+1\]

\[\Rightarrow {{3}^{n}}=81\]

We can write \[81={{3}^{4}}\]. So, we get,

\[\Rightarrow {{3}^{n}}={{3}^{4}}\]

We know that when \[{{a}^{p}}={{a}^{q}}\] then p = q for all the values of ‘a’ except -1, 0 and 1. By using this in the above equation, we get n = 4.

So our total terms are 4 and that are \[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}\] or 3, 9, 27, 81.

Note: Here students can cross-check their answer as follows:

We are given that the sum of the terms is 120. We have got the terms as 3, 9, 27, 81. So their sum would be 3 + 9 + 27 + 81 = 120. So, our answer is correct.

Last updated date: 01st Jun 2023

•

Total views: 326.4k

•

Views today: 3.82k

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE