
Ten witnesses, each of whom makes but one false statement in six, agree in asserting that a certain event took place, show that the odds are five to one in favour of the truth of their statement, even although the a priori probability of the event is as small as $\dfrac{1}{{{5^9} + 1}}$
Answer
622.2k+ views
Hint: Use the probability and events concepts to solve the problem in probability.
Let p be the probability of the event
Then the probability that their statement is true is to the probability that is as false and we know that witnesses=$10$
$ \Rightarrow \dfrac{{{{\left( {\frac{5}{6}} \right)}^{10}}p}}{{(1 - p){{\left( {\frac{1}{6}} \right)}^{10}}}}$
Here we have five odd statements in which to one favour of truth
Total statements =$6$
Odd statements=$5$
So here $\dfrac{{{5^{10}}p}}{{1 - p}}$ represents odd statements in favour of the event
Now in order that the odds in favour of the event may be at least five to one
Then condition will be:
$\frac{{{5^{10}}p}}{{1 - p}} \geqslant 5$
$\
\Rightarrow {5^{10}}p \geqslant 5 - 5p \\
\Rightarrow {5^9}p \geqslant 1 - p \\
\Rightarrow {5^9} + p \geqslant 1 \\
\Rightarrow p({5^9} + 1) \geqslant 1 \\
\Rightarrow p \geqslant \dfrac{1}{{{5^9} + 1}} \\
\ $
Hence we can say that for five odd statements to which one is favour of truth then the prior probability of the event is small as $\dfrac{1}{{{5^9} + 1}}$
NOTE: In this problem total witness will be ignored only by concentrating on the event with 5 odd statements to which one is favour of truth.
Let p be the probability of the event
Then the probability that their statement is true is to the probability that is as false and we know that witnesses=$10$
$ \Rightarrow \dfrac{{{{\left( {\frac{5}{6}} \right)}^{10}}p}}{{(1 - p){{\left( {\frac{1}{6}} \right)}^{10}}}}$
Here we have five odd statements in which to one favour of truth
Total statements =$6$
Odd statements=$5$
So here $\dfrac{{{5^{10}}p}}{{1 - p}}$ represents odd statements in favour of the event
Now in order that the odds in favour of the event may be at least five to one
Then condition will be:
$\frac{{{5^{10}}p}}{{1 - p}} \geqslant 5$
$\
\Rightarrow {5^{10}}p \geqslant 5 - 5p \\
\Rightarrow {5^9}p \geqslant 1 - p \\
\Rightarrow {5^9} + p \geqslant 1 \\
\Rightarrow p({5^9} + 1) \geqslant 1 \\
\Rightarrow p \geqslant \dfrac{1}{{{5^9} + 1}} \\
\ $
Hence we can say that for five odd statements to which one is favour of truth then the prior probability of the event is small as $\dfrac{1}{{{5^9} + 1}}$
NOTE: In this problem total witness will be ignored only by concentrating on the event with 5 odd statements to which one is favour of truth.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

