Ten witnesses, each of whom makes but one false statement in six, agree in asserting that a certain event took place, show that the odds are five to one in favour of the truth of their statement, even although the a priori probability of the event is as small as $\dfrac{1}{{{5^9} + 1}}$
Answer
Verified
509.1k+ views
Hint: Use the probability and events concepts to solve the problem in probability.
Let p be the probability of the event
Then the probability that their statement is true is to the probability that is as false and we know that witnesses=$10$
$ \Rightarrow \dfrac{{{{\left( {\frac{5}{6}} \right)}^{10}}p}}{{(1 - p){{\left( {\frac{1}{6}} \right)}^{10}}}}$
Here we have five odd statements in which to one favour of truth
Total statements =$6$
Odd statements=$5$
So here $\dfrac{{{5^{10}}p}}{{1 - p}}$ represents odd statements in favour of the event
Now in order that the odds in favour of the event may be at least five to one
Then condition will be:
$\frac{{{5^{10}}p}}{{1 - p}} \geqslant 5$
$\
\Rightarrow {5^{10}}p \geqslant 5 - 5p \\
\Rightarrow {5^9}p \geqslant 1 - p \\
\Rightarrow {5^9} + p \geqslant 1 \\
\Rightarrow p({5^9} + 1) \geqslant 1 \\
\Rightarrow p \geqslant \dfrac{1}{{{5^9} + 1}} \\
\ $
Hence we can say that for five odd statements to which one is favour of truth then the prior probability of the event is small as $\dfrac{1}{{{5^9} + 1}}$
NOTE: In this problem total witness will be ignored only by concentrating on the event with 5 odd statements to which one is favour of truth.
Let p be the probability of the event
Then the probability that their statement is true is to the probability that is as false and we know that witnesses=$10$
$ \Rightarrow \dfrac{{{{\left( {\frac{5}{6}} \right)}^{10}}p}}{{(1 - p){{\left( {\frac{1}{6}} \right)}^{10}}}}$
Here we have five odd statements in which to one favour of truth
Total statements =$6$
Odd statements=$5$
So here $\dfrac{{{5^{10}}p}}{{1 - p}}$ represents odd statements in favour of the event
Now in order that the odds in favour of the event may be at least five to one
Then condition will be:
$\frac{{{5^{10}}p}}{{1 - p}} \geqslant 5$
$\
\Rightarrow {5^{10}}p \geqslant 5 - 5p \\
\Rightarrow {5^9}p \geqslant 1 - p \\
\Rightarrow {5^9} + p \geqslant 1 \\
\Rightarrow p({5^9} + 1) \geqslant 1 \\
\Rightarrow p \geqslant \dfrac{1}{{{5^9} + 1}} \\
\ $
Hence we can say that for five odd statements to which one is favour of truth then the prior probability of the event is small as $\dfrac{1}{{{5^9} + 1}}$
NOTE: In this problem total witness will be ignored only by concentrating on the event with 5 odd statements to which one is favour of truth.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE