
How tall is a bridge if a 6 foot tall person standing 100 feet away can see the top of the bridge at an angle of 30 degrees to the horizon?
Answer
554.1k+ views
Hint:The above given question is a simple mathematical trigonometric word problem.
In order to express a mathematical problem explained in words we have to take all the relevant and important information mentioned in the word problem and represent it in a much easier way like an equation.
So by using the above definition and techniques we can solve the given question.
Complete step by step solution:
Given statement:
$
6{\text{ foot tall person standing }}100{\text{ feet away:}}\left( i \right) \\
{\text{At an angle }}{30^ \circ }{\text{to horizon he can see the top of the bridge:}}\left( {ii} \right)
\\
$
Now using the above two statements we have to find the height of the bridge.
Let’s assume that the eye level of the person to be at\[6\;{\text{feet}}\].
Now let the height of the bridge be$h$, also let the height $h$and the distance $100$be the legs of a right angle:
So now let’s construct a right angled triangle from the given information.
Such that we can draw as below:
Now we need to find$h$, for that let’s use some basic trigonometric properties. We know that:
\[\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}}\]
Here $\theta = {30^ \circ }$and also \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}.............................\left(
{iii} \right)\]
Also from the given right angled triangle we can write:
\[\tan {30^ \circ } = \dfrac{h}{{100}} = \dfrac{1}{{\sqrt 3 }}.................\left( {iv} \right)\]
On simplifying (iv):
$h = \dfrac{{100}}{{\sqrt 3 }} = \dfrac{{100\sqrt 3 }}{3}$
Now we got $h$as$\dfrac{{100\sqrt 3 }}{3}$. But here we have assumed the eye level of the person to be at\[6\;{\text{feet}}\], so by also considering the height of the person since ${30^ \circ }$is measured relatively, we can say that the height of the bridge would be:$6 + \dfrac{{100\sqrt 3 }}{3}$
Therefore the bridge would be $6 + \dfrac{{100\sqrt 3 }}{3}$tall.
Note:
While solving a word problem after representing it in the symbolic form we have to try to eliminate various variables represented using equations by rearranging terms, using basic arithmetic operations and substitutions. Eventually we would be able to solve the question.
Some basic trigonometric identities are:
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
In order to express a mathematical problem explained in words we have to take all the relevant and important information mentioned in the word problem and represent it in a much easier way like an equation.
So by using the above definition and techniques we can solve the given question.
Complete step by step solution:
Given statement:
$
6{\text{ foot tall person standing }}100{\text{ feet away:}}\left( i \right) \\
{\text{At an angle }}{30^ \circ }{\text{to horizon he can see the top of the bridge:}}\left( {ii} \right)
\\
$
Now using the above two statements we have to find the height of the bridge.
Let’s assume that the eye level of the person to be at\[6\;{\text{feet}}\].
Now let the height of the bridge be$h$, also let the height $h$and the distance $100$be the legs of a right angle:
So now let’s construct a right angled triangle from the given information.
Such that we can draw as below:
Now we need to find$h$, for that let’s use some basic trigonometric properties. We know that:
\[\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}}\]
Here $\theta = {30^ \circ }$and also \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}.............................\left(
{iii} \right)\]
Also from the given right angled triangle we can write:
\[\tan {30^ \circ } = \dfrac{h}{{100}} = \dfrac{1}{{\sqrt 3 }}.................\left( {iv} \right)\]
On simplifying (iv):
$h = \dfrac{{100}}{{\sqrt 3 }} = \dfrac{{100\sqrt 3 }}{3}$
Now we got $h$as$\dfrac{{100\sqrt 3 }}{3}$. But here we have assumed the eye level of the person to be at\[6\;{\text{feet}}\], so by also considering the height of the person since ${30^ \circ }$is measured relatively, we can say that the height of the bridge would be:$6 + \dfrac{{100\sqrt 3 }}{3}$
Therefore the bridge would be $6 + \dfrac{{100\sqrt 3 }}{3}$tall.
Note:
While solving a word problem after representing it in the symbolic form we have to try to eliminate various variables represented using equations by rearranging terms, using basic arithmetic operations and substitutions. Eventually we would be able to solve the question.
Some basic trigonometric identities are:
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

