
What is the symmetric equation of a line in three dimensional space?
Answer
463.8k+ views
Hint: From the question we have been asked to find the equation of a line in three dimensional space. For solving this question we will use the concept of three dimensional geometry. We will use the formulae of symmetric equation of a line with the direction vector passing through a point which is \[ \dfrac{x-{{x}_{0}}}{a}=\dfrac{y-{{y}_{0}}}{b}=\dfrac{z-{{z}_{0}}}{c}\]. Using this we will explain some examples and solve this question briefly. So, our solution will be as follows.
Complete step by step solution:
Generally in geometry that is in three dimensional geometry, the formulae of symmetric equation of a line with the direction vector \[=\left( a,b,c \right)\] passing through a point \[\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)\] will be as follows.
\[\Rightarrow \dfrac{x-{{x}_{0}}}{a}=\dfrac{y-{{y}_{0}}}{b}=\dfrac{z-{{z}_{0}}}{c}\]
Here the directional vector points can’t be zero, that is \[a,b,c\] can’t be zero.
If one of \[a,b,c\] is zero; for example, \[c=0\], then we can write as follows:
\[\Rightarrow \dfrac{x-{{x}_{0}}}{a}=\dfrac{y-{{y}_{0}}}{b}\] and \[z={{z}_{0}}\].
If two of \[a,b,c\] are zero; for example, \[b=c=0\], then we can write as follows.
\[y={{y}_{0}},z={{z}_{0}}\]
Here there is no restriction on x it can be any value that is it can be any real number.
Note: Students must be very careful in doing the calculations. Students must know the concept of three dimensional geometry very well to solve this question. We should know the formulae \[ \dfrac{x-{{x}_{0}}}{a}=\dfrac{y-{{y}_{0}}}{b}=\dfrac{z-{{z}_{0}}}{c}\] and the various conditions to solve this question briefly.
Complete step by step solution:
Generally in geometry that is in three dimensional geometry, the formulae of symmetric equation of a line with the direction vector \[=\left( a,b,c \right)\] passing through a point \[\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)\] will be as follows.
\[\Rightarrow \dfrac{x-{{x}_{0}}}{a}=\dfrac{y-{{y}_{0}}}{b}=\dfrac{z-{{z}_{0}}}{c}\]
Here the directional vector points can’t be zero, that is \[a,b,c\] can’t be zero.
If one of \[a,b,c\] is zero; for example, \[c=0\], then we can write as follows:
\[\Rightarrow \dfrac{x-{{x}_{0}}}{a}=\dfrac{y-{{y}_{0}}}{b}\] and \[z={{z}_{0}}\].
If two of \[a,b,c\] are zero; for example, \[b=c=0\], then we can write as follows.
\[y={{y}_{0}},z={{z}_{0}}\]
Here there is no restriction on x it can be any value that is it can be any real number.
Note: Students must be very careful in doing the calculations. Students must know the concept of three dimensional geometry very well to solve this question. We should know the formulae \[ \dfrac{x-{{x}_{0}}}{a}=\dfrac{y-{{y}_{0}}}{b}=\dfrac{z-{{z}_{0}}}{c}\] and the various conditions to solve this question briefly.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
