
Supposing the ionization energy of hydrogen-like species is $960$ eV. Find out the value of principal quantum number having energy equal to $ - 60$ eV
(A) $n = 2$
(B) $n = 3$
(C) $n = 4$
(D) $n = 5$
Answer
564.9k+ views
Hint: The ionization energy of the shell is the negative of the energy of the shell that is $I.E = - {E_1}$ The energy for the nth main shell is given by the following relation
${E_n} = \dfrac{{{E_1}}}{{{n^2}}} \times {Z^2}$
where Z is the atomic number, n is the orbit in which the electron is present. We will use this formula in the given question and arrive at the correct answer.
Complete step by step solution:
We have been given the ionization energy of hydrogen-like species that is $960\;eV$ so by the following relation $I.E = - {E_1}$ . So accordingly using the formula that is
Energy for an nth main shell of hydrogen atom=Ionization energy of hydrogen atom /${n^2}$
So putting the given values in the equation, we get
$ - 60 = \dfrac{{ - 960}}{{{n^2}}}$
$ \Rightarrow $ $60 = \dfrac{{960}}{{{n^2}}}$
${n^2} = \dfrac{{960}}{{60}} = 16 \Rightarrow n = 4$
Therefore the value of principal quantum number having energy equal to $ - 60$ eV is four
So, the correct answer is Option C.
Additional information:
For hydrogen-like species, the energy of an electron in the nth orbit is given by ${E_n} = R\dfrac{{{z^2}}}{{{n^2}}}J/atom$ where R is the Rydberg constant which is equal to $2.18 \times {10^{ - 18}}$ .
Also, the ionization energy increases with an increase in atomic number and decreases with a decrease in atomic number due to a decrease in proximity and attractive force with the nucleus.
Note: ionization energy is defined as the energy required to remove an electron from the outermost shell of an isolated gaseous atom. For hydrogen-like species, Z is taken to be one and the ionization energy of the species is the negative of the energy of the electron in the ground state.
${E_n} = \dfrac{{{E_1}}}{{{n^2}}} \times {Z^2}$
where Z is the atomic number, n is the orbit in which the electron is present. We will use this formula in the given question and arrive at the correct answer.
Complete step by step solution:
We have been given the ionization energy of hydrogen-like species that is $960\;eV$ so by the following relation $I.E = - {E_1}$ . So accordingly using the formula that is
Energy for an nth main shell of hydrogen atom=Ionization energy of hydrogen atom /${n^2}$
So putting the given values in the equation, we get
$ - 60 = \dfrac{{ - 960}}{{{n^2}}}$
$ \Rightarrow $ $60 = \dfrac{{960}}{{{n^2}}}$
${n^2} = \dfrac{{960}}{{60}} = 16 \Rightarrow n = 4$
Therefore the value of principal quantum number having energy equal to $ - 60$ eV is four
So, the correct answer is Option C.
Additional information:
For hydrogen-like species, the energy of an electron in the nth orbit is given by ${E_n} = R\dfrac{{{z^2}}}{{{n^2}}}J/atom$ where R is the Rydberg constant which is equal to $2.18 \times {10^{ - 18}}$ .
Also, the ionization energy increases with an increase in atomic number and decreases with a decrease in atomic number due to a decrease in proximity and attractive force with the nucleus.
Note: ionization energy is defined as the energy required to remove an electron from the outermost shell of an isolated gaseous atom. For hydrogen-like species, Z is taken to be one and the ionization energy of the species is the negative of the energy of the electron in the ground state.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

