Answer
Verified
456k+ views
Hint: The above problem is a binomial distribution problem in which the probability of success is the number of people consuming rice and it is given that the probability of consuming rice by the individuals from the total population is $\dfrac{1}{2}$ and we have to find the number of investigators given that 3 or fewer people interviewed is consumers of rice. Number of investigators when r people interviewed are consumers of rice are ${}^{10}{{C}_{r}}{{\left( \dfrac{1}{2} \right)}^{r}}{{\left( \dfrac{1}{2} \right)}^{10-r}}.100$. Now, we are going to calculate the number of investigators when 3 or fewer people interviewed are consumers of rice are the addition of the number of investigators when 0, 1, 2 and 3 people interviewed were consumers of rice.
Complete step-by-step solution
It is given that from the given population, the fraction of the population which is consumers of rice is $\dfrac{1}{2}$. And 100 investigators are appointed in which each investigator interview 10 individuals so this is a binomial distribution problem in which the probability that from the r individuals interviewed, all are consumers of rice are:
$P\left( X=r \right)={}^{10}{{C}_{r}}{{\left( \dfrac{1}{2} \right)}^{r}}{{\left( 1-\dfrac{1}{2} \right)}^{10-r}}$
In the above expression, $\dfrac{1}{2}$ is the probability of success which is the ratio of the population which are consumers of the rice from the given population.
Now, the number of investigators when r people interviewed are consumers of rice are:
$E\left( X=r \right)={}^{10}{{C}_{r}}{{\left( \dfrac{1}{2} \right)}^{r}}{{\left( \dfrac{1}{2} \right)}^{10-r}}.100$
The number of investigators who report that 3 or less people interviewed are consumers of rice are:
$E\left( X=0 \right)+E\left( X=1 \right)+E\left( X=2 \right)+E\left( X=3 \right)$
$\begin{align}
& {}^{10}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{0}}{{\left( \dfrac{1}{2} \right)}^{10-0}}.100+{}^{10}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{1}}{{\left( \dfrac{1}{2} \right)}^{10-1}}.100+{}^{10}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{2}}{{\left( \dfrac{1}{2} \right)}^{10-2}}.100+{}^{10}{{C}_{3}}{{\left( \dfrac{1}{2} \right)}^{3}}{{\left( \dfrac{1}{2} \right)}^{10-3}}.100 \\
& =1\left( 1 \right){{\left( \dfrac{1}{2} \right)}^{10}}.100+10\left( \dfrac{1}{2} \right){{\left( \dfrac{1}{2} \right)}^{9}}.100+\dfrac{10!}{2!\left( 10-2 \right)!}{{\left( \dfrac{1}{2} \right)}^{2}}{{\left( \dfrac{1}{2} \right)}^{8}}.100+\dfrac{10!}{3!\left( 10-3 \right)!}{{\left( \dfrac{1}{2} \right)}^{3}}{{\left( \dfrac{1}{2} \right)}^{7}}.100 \\
& =\dfrac{1}{{{2}^{10}}}.100+10\left( \dfrac{1}{{{2}^{10}}} \right).100+\dfrac{10.9.8!}{2.1.8!}\left( \dfrac{1}{{{2}^{10}}} \right).100+\dfrac{10.9.8.7!}{3.2.1.7!}\left( \dfrac{1}{{{2}^{10}}} \right).100 \\
\end{align}$
In the above expression, $8!\And 7!$ will be cancelled out from the numerator and denominator and we get,
$\dfrac{1}{{{2}^{10}}}.100+10\left( \dfrac{1}{{{2}^{10}}} \right).100+\dfrac{10.9}{2.1}\left( \dfrac{1}{{{2}^{10}}} \right).100+\dfrac{10.9.8}{3.2.1}\left( \dfrac{1}{{{2}^{10}}} \right).100$
In the above expression, taking $\dfrac{100}{{{2}^{10}}}$ as common we get,
$\begin{align}
& \dfrac{100}{{{2}^{10}}}\left( 1+10+45+120 \right) \\
& =\dfrac{100}{1024}\left( 176 \right) \\
& =17.19 \\
\end{align}$
Rounding off the above number we get,
17.
Hence, 17 investigators expect to report that three or less of the people interviewed are consumers of rice.
Note: As you can see that the question demands rigorous calculations so make sure you won’t make any calculations mistakes. Along with that while writing the value of ${{2}^{10}}$ generally, one or two “2” will be missed in the multiplication so be careful in writing the power of 2 also.
And another mistake that could happen in the above problem is that you might forget to add the following expression:
${}^{10}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{0}}{{\left( \dfrac{1}{2} \right)}^{10-0}}.100$
Because we have to write the number of investigators which you can expect for 3 or fewer number of people interviewed so you might forget to add the expression when no people have been interviewed.
Complete step-by-step solution
It is given that from the given population, the fraction of the population which is consumers of rice is $\dfrac{1}{2}$. And 100 investigators are appointed in which each investigator interview 10 individuals so this is a binomial distribution problem in which the probability that from the r individuals interviewed, all are consumers of rice are:
$P\left( X=r \right)={}^{10}{{C}_{r}}{{\left( \dfrac{1}{2} \right)}^{r}}{{\left( 1-\dfrac{1}{2} \right)}^{10-r}}$
In the above expression, $\dfrac{1}{2}$ is the probability of success which is the ratio of the population which are consumers of the rice from the given population.
Now, the number of investigators when r people interviewed are consumers of rice are:
$E\left( X=r \right)={}^{10}{{C}_{r}}{{\left( \dfrac{1}{2} \right)}^{r}}{{\left( \dfrac{1}{2} \right)}^{10-r}}.100$
The number of investigators who report that 3 or less people interviewed are consumers of rice are:
$E\left( X=0 \right)+E\left( X=1 \right)+E\left( X=2 \right)+E\left( X=3 \right)$
$\begin{align}
& {}^{10}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{0}}{{\left( \dfrac{1}{2} \right)}^{10-0}}.100+{}^{10}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{1}}{{\left( \dfrac{1}{2} \right)}^{10-1}}.100+{}^{10}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{2}}{{\left( \dfrac{1}{2} \right)}^{10-2}}.100+{}^{10}{{C}_{3}}{{\left( \dfrac{1}{2} \right)}^{3}}{{\left( \dfrac{1}{2} \right)}^{10-3}}.100 \\
& =1\left( 1 \right){{\left( \dfrac{1}{2} \right)}^{10}}.100+10\left( \dfrac{1}{2} \right){{\left( \dfrac{1}{2} \right)}^{9}}.100+\dfrac{10!}{2!\left( 10-2 \right)!}{{\left( \dfrac{1}{2} \right)}^{2}}{{\left( \dfrac{1}{2} \right)}^{8}}.100+\dfrac{10!}{3!\left( 10-3 \right)!}{{\left( \dfrac{1}{2} \right)}^{3}}{{\left( \dfrac{1}{2} \right)}^{7}}.100 \\
& =\dfrac{1}{{{2}^{10}}}.100+10\left( \dfrac{1}{{{2}^{10}}} \right).100+\dfrac{10.9.8!}{2.1.8!}\left( \dfrac{1}{{{2}^{10}}} \right).100+\dfrac{10.9.8.7!}{3.2.1.7!}\left( \dfrac{1}{{{2}^{10}}} \right).100 \\
\end{align}$
In the above expression, $8!\And 7!$ will be cancelled out from the numerator and denominator and we get,
$\dfrac{1}{{{2}^{10}}}.100+10\left( \dfrac{1}{{{2}^{10}}} \right).100+\dfrac{10.9}{2.1}\left( \dfrac{1}{{{2}^{10}}} \right).100+\dfrac{10.9.8}{3.2.1}\left( \dfrac{1}{{{2}^{10}}} \right).100$
In the above expression, taking $\dfrac{100}{{{2}^{10}}}$ as common we get,
$\begin{align}
& \dfrac{100}{{{2}^{10}}}\left( 1+10+45+120 \right) \\
& =\dfrac{100}{1024}\left( 176 \right) \\
& =17.19 \\
\end{align}$
Rounding off the above number we get,
17.
Hence, 17 investigators expect to report that three or less of the people interviewed are consumers of rice.
Note: As you can see that the question demands rigorous calculations so make sure you won’t make any calculations mistakes. Along with that while writing the value of ${{2}^{10}}$ generally, one or two “2” will be missed in the multiplication so be careful in writing the power of 2 also.
And another mistake that could happen in the above problem is that you might forget to add the following expression:
${}^{10}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{0}}{{\left( \dfrac{1}{2} \right)}^{10-0}}.100$
Because we have to write the number of investigators which you can expect for 3 or fewer number of people interviewed so you might forget to add the expression when no people have been interviewed.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE