
Suppose \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\]. Then determine the function \[f\left( x \right)\].
Answer
513.9k+ views
Hint: In this question, we will first evaluate the integral \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\], for that we will split the integral into \[\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx\]. Then we will not evaluate the value of the integral \[\int {{e}^{x}}\tan x\sec xdx\] rather we will evaluate \[\int {{e}^{x}}\sec xdx\] and we will see that it can be expressed in the form of \[\int {{e}^{x}}\tan x\sec xdx\]. We will then add both the value of the integrals and write it in the form of \[{{e}^{x}}f\left( x \right)+c\]. Then by equation both the values we will determine the function \[f\left( x \right)\].
Complete step by step answer:
We are given that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\].
Let \[I\] denote the integral \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\].
That is, let \[I=\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\].
Now on splitting the above integrals, we will have
\[I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx\]
Let us suppose that the integral \[\int {{e}^{x}}\tan x\sec xdx\] is denoted by \[{{I}_{1}}\] and the integral \[\int {{e}^{x}}\sec xdx\] is denoted by \[{{I}_{2}}\].
That is, we have
\[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\] and
\[{{I}_{2}}=\int {{e}^{x}}\sec xdx\]
Since we know that by integration by parts we have \[\int{\left( uv \right)dx=u\int{vdx-\int{\dfrac{d}{dx}\left( u \right)\int{vdx}}}}\]
We will now evaluate the integral \[{{I}_{2}}=\int {{e}^{x}}\sec xdx\] by using integration by parts.
Suppose \[u=\sec x\] and \[v={{e}^{x}}\], then we have
\[\begin{align}
& {{I}_{2}}=\int {{e}^{x}}\sec xdx \\
& =\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}}
\end{align}\]
Now since \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\], therefore the above integral becomes
\[\begin{align}
& {{I}_{2}}=\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}} \\
& =\sec x\left( {{e}^{x}} \right)-\int{\sec x\tan x{{e}^{x}}dx} \\
& ={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c
\end{align}\]
We also have the integral \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\], hence using the value of \[{{I}_{1}}\] in the above integral, we have
\[\begin{align}
& {{I}_{2}}={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c \\
& ={{e}^{x}}\sec x-{{I}_{1}}+c
\end{align}\]
Now substituting the value of integral \[{{I}_{1}}\] and \[{{I}_{2}}\] in integral \[I\], we get
\[\begin{align}
& I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx \\
& ={{I}_{1}}+{{I}_{2}} \\
& ={{I}_{1}}+{{e}^{x}}\sec x-{{I}_{1}}+c \\
& ={{e}^{x}}\sec x+c..............(1)
\end{align}\]
We are also given that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\].
That is \[I={{e}^{x}}f\left( x \right)+c.............(2)\].
On equating equation (1) and (2), we get
\[{{e}^{x}}f\left( x \right)+c={{e}^{x}}\sec x+c\]
\[\Rightarrow f\left( x \right)=\sec x\]
Hence we get that the function \[f\left( x \right)\] such that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\] is equals to \[\sec x\].
Note:
In this problem, while evaluating the integrals \[I=\int {{e}^{x}}\tan x\sec x dx+\int {{e}^{x}}\sec xdx\] where \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\] and \[{{I}_{2}}=\int {{e}^{x}}\sec x dx\], please do not try to expand the integral \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\], otherwise complications of the problem will increase. Moreover keep in mind the fact that \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\] and use it in order to simplify the evaluation of the integrals.
Complete step by step answer:
We are given that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\].
Let \[I\] denote the integral \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\].
That is, let \[I=\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\].
Now on splitting the above integrals, we will have
\[I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx\]
Let us suppose that the integral \[\int {{e}^{x}}\tan x\sec xdx\] is denoted by \[{{I}_{1}}\] and the integral \[\int {{e}^{x}}\sec xdx\] is denoted by \[{{I}_{2}}\].
That is, we have
\[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\] and
\[{{I}_{2}}=\int {{e}^{x}}\sec xdx\]
Since we know that by integration by parts we have \[\int{\left( uv \right)dx=u\int{vdx-\int{\dfrac{d}{dx}\left( u \right)\int{vdx}}}}\]
We will now evaluate the integral \[{{I}_{2}}=\int {{e}^{x}}\sec xdx\] by using integration by parts.
Suppose \[u=\sec x\] and \[v={{e}^{x}}\], then we have
\[\begin{align}
& {{I}_{2}}=\int {{e}^{x}}\sec xdx \\
& =\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}}
\end{align}\]
Now since \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\], therefore the above integral becomes
\[\begin{align}
& {{I}_{2}}=\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}} \\
& =\sec x\left( {{e}^{x}} \right)-\int{\sec x\tan x{{e}^{x}}dx} \\
& ={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c
\end{align}\]
We also have the integral \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\], hence using the value of \[{{I}_{1}}\] in the above integral, we have
\[\begin{align}
& {{I}_{2}}={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c \\
& ={{e}^{x}}\sec x-{{I}_{1}}+c
\end{align}\]
Now substituting the value of integral \[{{I}_{1}}\] and \[{{I}_{2}}\] in integral \[I\], we get
\[\begin{align}
& I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx \\
& ={{I}_{1}}+{{I}_{2}} \\
& ={{I}_{1}}+{{e}^{x}}\sec x-{{I}_{1}}+c \\
& ={{e}^{x}}\sec x+c..............(1)
\end{align}\]
We are also given that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\].
That is \[I={{e}^{x}}f\left( x \right)+c.............(2)\].
On equating equation (1) and (2), we get
\[{{e}^{x}}f\left( x \right)+c={{e}^{x}}\sec x+c\]
\[\Rightarrow f\left( x \right)=\sec x\]
Hence we get that the function \[f\left( x \right)\] such that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\] is equals to \[\sec x\].
Note:
In this problem, while evaluating the integrals \[I=\int {{e}^{x}}\tan x\sec x dx+\int {{e}^{x}}\sec xdx\] where \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\] and \[{{I}_{2}}=\int {{e}^{x}}\sec x dx\], please do not try to expand the integral \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\], otherwise complications of the problem will increase. Moreover keep in mind the fact that \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\] and use it in order to simplify the evaluation of the integrals.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
