Answer
Verified
391.5k+ views
Hint: Apply the continuity condition of a function f (x) at point x = k given as $\displaystyle \lim_{x \to k^-}f\left( x \right)=\displaystyle \lim_{x \to k^+}f\left( x \right)=f\left( k \right)$ where $\displaystyle \lim_{x \to k^-}f\left( x \right)$ is called the Left Hand Limit (L.H.L), $\displaystyle \lim_{x \to k^+}f\left( x \right)$ is called the Right Hand Limit (R.H.L) and $f\left( k \right)$ is called the value of the function at x = k. Substitute $f\left( 2 \right)=6$ and establish two linear relations between $a$ and $\mu $ to find their values.
Complete step by step solution:
Here we have been provide with the function $f\left( x \right)=\left\{ \begin{align}
& a+\mu x,x<2 \\
& 6,x=2 \\
& \mu -ax,x>2 \\
\end{align} \right\}$ with the condition $\displaystyle \lim_{x \to 2}f\left( x \right)=f\left( 2 \right)$ and we are asked to find the values of $a$ and $\mu $.
Now, we can clearly see that the given function is continuous at x = 2 according to the given conditions in the question. Alternatively, we know that a function is continuous only when we have the condition $\displaystyle \lim_{x \to k^-}f\left( x \right)=\displaystyle \lim_{x \to k^+}f\left( x \right)=f\left( k \right)$ where $\displaystyle \lim_{x \to k^-}f\left( x \right)$ is called the Left Hand Limit (L.H.L), $\displaystyle \lim_{x \to k^+}f\left( x \right)$ is called the Right Hand Limit (R.H.L) and $f\left( k \right)$ is called the value of the function at x = k. Let us find the values of limits one by one.
(i) For the Left Hand Limit we have,
$\Rightarrow $ L.H.L = $\displaystyle \lim_{x \to 2^-}f\left( x \right)$
$\Rightarrow $ L.H.L = $\displaystyle \lim_{x \to 2^-}\left( a+\mu x \right)$
$\Rightarrow $ L.H.L = $\left( a+2\mu \right)$ ……… (1)
(ii) For the Right Hand Limit we have,
$\Rightarrow $ R.H.L = $\displaystyle \lim_{x \to 2^+}f\left( x \right)$
$\Rightarrow $ R.H.L = $\displaystyle \lim_{x \to 2^-}\left( \mu -ax \right)$
$\Rightarrow $ R.H.L = $\left( \mu -2a \right)$ ……… (2)
(iii) For the value of the function we have,
$\Rightarrow f\left( 2 \right)=6$ …….. (3)
So equating the three relations we get,
$\Rightarrow \left( a+2\mu \right)=\left( \mu -2a \right)=6$
Solving the two linear equations for the values of $a$ and $\mu $ we get,
$\therefore a=\dfrac{-6}{5}$ and $\mu =\dfrac{18}{5}$
Hence, the above values of $a$ and $\mu $ are our answer.
Note: You may check the answer by substituting the obtained values of $a$ and $\mu $ in the given function $f\left( x \right)$ and then evaluating the limit at x = 2. You must remember the condition for the existence of a limit around a given point. If any of the limits (R.H.L, L.H.L or value of the function) does not exist or is not a finite value then the limit does not exist at a particular point.
Complete step by step solution:
Here we have been provide with the function $f\left( x \right)=\left\{ \begin{align}
& a+\mu x,x<2 \\
& 6,x=2 \\
& \mu -ax,x>2 \\
\end{align} \right\}$ with the condition $\displaystyle \lim_{x \to 2}f\left( x \right)=f\left( 2 \right)$ and we are asked to find the values of $a$ and $\mu $.
Now, we can clearly see that the given function is continuous at x = 2 according to the given conditions in the question. Alternatively, we know that a function is continuous only when we have the condition $\displaystyle \lim_{x \to k^-}f\left( x \right)=\displaystyle \lim_{x \to k^+}f\left( x \right)=f\left( k \right)$ where $\displaystyle \lim_{x \to k^-}f\left( x \right)$ is called the Left Hand Limit (L.H.L), $\displaystyle \lim_{x \to k^+}f\left( x \right)$ is called the Right Hand Limit (R.H.L) and $f\left( k \right)$ is called the value of the function at x = k. Let us find the values of limits one by one.
(i) For the Left Hand Limit we have,
$\Rightarrow $ L.H.L = $\displaystyle \lim_{x \to 2^-}f\left( x \right)$
$\Rightarrow $ L.H.L = $\displaystyle \lim_{x \to 2^-}\left( a+\mu x \right)$
$\Rightarrow $ L.H.L = $\left( a+2\mu \right)$ ……… (1)
(ii) For the Right Hand Limit we have,
$\Rightarrow $ R.H.L = $\displaystyle \lim_{x \to 2^+}f\left( x \right)$
$\Rightarrow $ R.H.L = $\displaystyle \lim_{x \to 2^-}\left( \mu -ax \right)$
$\Rightarrow $ R.H.L = $\left( \mu -2a \right)$ ……… (2)
(iii) For the value of the function we have,
$\Rightarrow f\left( 2 \right)=6$ …….. (3)
So equating the three relations we get,
$\Rightarrow \left( a+2\mu \right)=\left( \mu -2a \right)=6$
Solving the two linear equations for the values of $a$ and $\mu $ we get,
$\therefore a=\dfrac{-6}{5}$ and $\mu =\dfrac{18}{5}$
Hence, the above values of $a$ and $\mu $ are our answer.
Note: You may check the answer by substituting the obtained values of $a$ and $\mu $ in the given function $f\left( x \right)$ and then evaluating the limit at x = 2. You must remember the condition for the existence of a limit around a given point. If any of the limits (R.H.L, L.H.L or value of the function) does not exist or is not a finite value then the limit does not exist at a particular point.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE