Suppose \[{a_2},{a_3},{a_4},{a_5},{a_6},{a_7}\] are integers such that,
\[\dfrac{5}{7} = \dfrac{{{a_2}}}{{2!}} + \dfrac{{{a_3}}}{{3!}} + \dfrac{{{a_4}}}{{4!}} + \dfrac{{{a_5}}}{{5!}} + \dfrac{{{a_6}}}{{6!}} + \dfrac{{{a_7}}}{{7!}}\]
Where, \[0 \leqslant a < j\] for \[j = 2,3,4,5,6,7\] . The sum \[{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7}\] is?
Last updated date: 15th Mar 2023
•
Total views: 203.4k
•
Views today: 4.86k
Answer
203.4k+ views
Hint: Here we are given some fractions, which have factorial in its denominator. For the relation we are given above, we have to find the sum of all the unknown variables \[{a_2},{a_3},{a_4},{a_5},{a_6},{a_7}\]. To do so, we see that the denominator values are the product of the previous term denominator and just the next value of the previous value under factorial of the previous term. We use this pattern to solve this question.
Complete step-by-step solution:
We are given that,
\[\dfrac{5}{7} = \dfrac{{{a_2}}}{{2!}} + \dfrac{{{a_3}}}{{3!}} + \dfrac{{{a_4}}}{{4!}} + \dfrac{{{a_5}}}{{5!}} + \dfrac{{{a_6}}}{{6!}} + \dfrac{{{a_7}}}{{7!}}\]
Since we know that \[a! = a \times (a - 1) \times ... \times 1\], we can write the denominators of RHS as,
\[ \Rightarrow \dfrac{5}{7} = \dfrac{{{a_2}}}{{2 \times 3}} + \dfrac{{{a_3}}}{{3 \times 2 \times 1}} + \dfrac{{{a_4}}}{{4 \times 3 \times 2 \times 1}} + \dfrac{{{a_5}}}{{5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_6}}}{{6 \times 5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_7}}}{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1!}}\]
We now take common \[\dfrac{1}{2}\] from the RHS, \[\dfrac{1}{3}\]from all terms of RHS except first term and so on,
\[ \Rightarrow \dfrac{5}{7} = \dfrac{1}{2}\left[ {{a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right]} \right]\]
We now solve this as,
\[
\Rightarrow \dfrac{{5 \times 2}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow \dfrac{{10}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow 1 + \dfrac{3}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\]
We know that terms after \[{a_2}\] have values less than \[1\], so we get
\[{a_2} = 1\]
Now on solving further,
\[
\Rightarrow \dfrac{3}{7} = \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow \dfrac{9}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\
\Rightarrow 1 + \dfrac{2}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\
\]
We can see that terms after \[{a_3}\] have value less than \[1\], so we get
\[{a_3} = 1\]
On solving further we get the values of other unknown integers as,
\[{a_4} = 1\]
\[{a_5} = 0\]
\[{a_6} = 4\]
\[{a_7} = 2\]
Now we are asked to find the value of \[{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7}\], we find it as,
\[
{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 1 + 1 + 1 + 0 + 4 + 2 \\
\Rightarrow {a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 9 \]
Hence we get the answer as \[9\].
Note: Factorial of a number is a way to write the multiplication of consecutive terms in a decreasing way of that number. It is highly used in Permutation Combination, Binomial theorem, Probability theory and many more areas. It is important to be comfortable with its properties to be able to study math and statistics, especially the topics mentioned above further.
Complete step-by-step solution:
We are given that,
\[\dfrac{5}{7} = \dfrac{{{a_2}}}{{2!}} + \dfrac{{{a_3}}}{{3!}} + \dfrac{{{a_4}}}{{4!}} + \dfrac{{{a_5}}}{{5!}} + \dfrac{{{a_6}}}{{6!}} + \dfrac{{{a_7}}}{{7!}}\]
Since we know that \[a! = a \times (a - 1) \times ... \times 1\], we can write the denominators of RHS as,
\[ \Rightarrow \dfrac{5}{7} = \dfrac{{{a_2}}}{{2 \times 3}} + \dfrac{{{a_3}}}{{3 \times 2 \times 1}} + \dfrac{{{a_4}}}{{4 \times 3 \times 2 \times 1}} + \dfrac{{{a_5}}}{{5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_6}}}{{6 \times 5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_7}}}{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1!}}\]
We now take common \[\dfrac{1}{2}\] from the RHS, \[\dfrac{1}{3}\]from all terms of RHS except first term and so on,
\[ \Rightarrow \dfrac{5}{7} = \dfrac{1}{2}\left[ {{a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right]} \right]\]
We now solve this as,
\[
\Rightarrow \dfrac{{5 \times 2}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow \dfrac{{10}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow 1 + \dfrac{3}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\]
We know that terms after \[{a_2}\] have values less than \[1\], so we get
\[{a_2} = 1\]
Now on solving further,
\[
\Rightarrow \dfrac{3}{7} = \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow \dfrac{9}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\
\Rightarrow 1 + \dfrac{2}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\
\]
We can see that terms after \[{a_3}\] have value less than \[1\], so we get
\[{a_3} = 1\]
On solving further we get the values of other unknown integers as,
\[{a_4} = 1\]
\[{a_5} = 0\]
\[{a_6} = 4\]
\[{a_7} = 2\]
Now we are asked to find the value of \[{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7}\], we find it as,
\[
{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 1 + 1 + 1 + 0 + 4 + 2 \\
\Rightarrow {a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 9 \]
Hence we get the answer as \[9\].
Note: Factorial of a number is a way to write the multiplication of consecutive terms in a decreasing way of that number. It is highly used in Permutation Combination, Binomial theorem, Probability theory and many more areas. It is important to be comfortable with its properties to be able to study math and statistics, especially the topics mentioned above further.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
