Answer

Verified

384.3k+ views

**Hint:**Here we are given some fractions, which have factorial in its denominator. For the relation we are given above, we have to find the sum of all the unknown variables \[{a_2},{a_3},{a_4},{a_5},{a_6},{a_7}\]. To do so, we see that the denominator values are the product of the previous term denominator and just the next value of the previous value under factorial of the previous term. We use this pattern to solve this question.

**Complete step-by-step solution:**

We are given that,

\[\dfrac{5}{7} = \dfrac{{{a_2}}}{{2!}} + \dfrac{{{a_3}}}{{3!}} + \dfrac{{{a_4}}}{{4!}} + \dfrac{{{a_5}}}{{5!}} + \dfrac{{{a_6}}}{{6!}} + \dfrac{{{a_7}}}{{7!}}\]

Since we know that \[a! = a \times (a - 1) \times ... \times 1\], we can write the denominators of RHS as,

\[ \Rightarrow \dfrac{5}{7} = \dfrac{{{a_2}}}{{2 \times 3}} + \dfrac{{{a_3}}}{{3 \times 2 \times 1}} + \dfrac{{{a_4}}}{{4 \times 3 \times 2 \times 1}} + \dfrac{{{a_5}}}{{5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_6}}}{{6 \times 5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_7}}}{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1!}}\]

We now take common \[\dfrac{1}{2}\] from the RHS, \[\dfrac{1}{3}\]from all terms of RHS except first term and so on,

\[ \Rightarrow \dfrac{5}{7} = \dfrac{1}{2}\left[ {{a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right]} \right]\]

We now solve this as,

\[

\Rightarrow \dfrac{{5 \times 2}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\

\Rightarrow \dfrac{{10}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\

\Rightarrow 1 + \dfrac{3}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\

\]

We know that terms after \[{a_2}\] have values less than \[1\], so we get

\[{a_2} = 1\]

Now on solving further,

\[

\Rightarrow \dfrac{3}{7} = \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\

\Rightarrow \dfrac{9}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\

\Rightarrow 1 + \dfrac{2}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\

\]

We can see that terms after \[{a_3}\] have value less than \[1\], so we get

\[{a_3} = 1\]

On solving further we get the values of other unknown integers as,

\[{a_4} = 1\]

\[{a_5} = 0\]

\[{a_6} = 4\]

\[{a_7} = 2\]

Now we are asked to find the value of \[{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7}\], we find it as,

\[

{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 1 + 1 + 1 + 0 + 4 + 2 \\

\Rightarrow {a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 9 \]

**Hence we get the answer as \[9\].**

**Note:**Factorial of a number is a way to write the multiplication of consecutive terms in a decreasing way of that number. It is highly used in Permutation Combination, Binomial theorem, Probability theory and many more areas. It is important to be comfortable with its properties to be able to study math and statistics, especially the topics mentioned above further.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE