Suppose \[{a_2},{a_3},{a_4},{a_5},{a_6},{a_7}\] are integers such that,
\[\dfrac{5}{7} = \dfrac{{{a_2}}}{{2!}} + \dfrac{{{a_3}}}{{3!}} + \dfrac{{{a_4}}}{{4!}} + \dfrac{{{a_5}}}{{5!}} + \dfrac{{{a_6}}}{{6!}} + \dfrac{{{a_7}}}{{7!}}\]
Where, \[0 \leqslant a < j\] for \[j = 2,3,4,5,6,7\] . The sum \[{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7}\] is?
Answer
281.1k+ views
Hint: Here we are given some fractions, which have factorial in its denominator. For the relation we are given above, we have to find the sum of all the unknown variables \[{a_2},{a_3},{a_4},{a_5},{a_6},{a_7}\]. To do so, we see that the denominator values are the product of the previous term denominator and just the next value of the previous value under factorial of the previous term. We use this pattern to solve this question.
Complete step-by-step solution:
We are given that,
\[\dfrac{5}{7} = \dfrac{{{a_2}}}{{2!}} + \dfrac{{{a_3}}}{{3!}} + \dfrac{{{a_4}}}{{4!}} + \dfrac{{{a_5}}}{{5!}} + \dfrac{{{a_6}}}{{6!}} + \dfrac{{{a_7}}}{{7!}}\]
Since we know that \[a! = a \times (a - 1) \times ... \times 1\], we can write the denominators of RHS as,
\[ \Rightarrow \dfrac{5}{7} = \dfrac{{{a_2}}}{{2 \times 3}} + \dfrac{{{a_3}}}{{3 \times 2 \times 1}} + \dfrac{{{a_4}}}{{4 \times 3 \times 2 \times 1}} + \dfrac{{{a_5}}}{{5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_6}}}{{6 \times 5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_7}}}{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1!}}\]
We now take common \[\dfrac{1}{2}\] from the RHS, \[\dfrac{1}{3}\]from all terms of RHS except first term and so on,
\[ \Rightarrow \dfrac{5}{7} = \dfrac{1}{2}\left[ {{a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right]} \right]\]
We now solve this as,
\[
\Rightarrow \dfrac{{5 \times 2}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow \dfrac{{10}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow 1 + \dfrac{3}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\]
We know that terms after \[{a_2}\] have values less than \[1\], so we get
\[{a_2} = 1\]
Now on solving further,
\[
\Rightarrow \dfrac{3}{7} = \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow \dfrac{9}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\
\Rightarrow 1 + \dfrac{2}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\
\]
We can see that terms after \[{a_3}\] have value less than \[1\], so we get
\[{a_3} = 1\]
On solving further we get the values of other unknown integers as,
\[{a_4} = 1\]
\[{a_5} = 0\]
\[{a_6} = 4\]
\[{a_7} = 2\]
Now we are asked to find the value of \[{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7}\], we find it as,
\[
{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 1 + 1 + 1 + 0 + 4 + 2 \\
\Rightarrow {a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 9 \]
Hence we get the answer as \[9\].
Note: Factorial of a number is a way to write the multiplication of consecutive terms in a decreasing way of that number. It is highly used in Permutation Combination, Binomial theorem, Probability theory and many more areas. It is important to be comfortable with its properties to be able to study math and statistics, especially the topics mentioned above further.
Complete step-by-step solution:
We are given that,
\[\dfrac{5}{7} = \dfrac{{{a_2}}}{{2!}} + \dfrac{{{a_3}}}{{3!}} + \dfrac{{{a_4}}}{{4!}} + \dfrac{{{a_5}}}{{5!}} + \dfrac{{{a_6}}}{{6!}} + \dfrac{{{a_7}}}{{7!}}\]
Since we know that \[a! = a \times (a - 1) \times ... \times 1\], we can write the denominators of RHS as,
\[ \Rightarrow \dfrac{5}{7} = \dfrac{{{a_2}}}{{2 \times 3}} + \dfrac{{{a_3}}}{{3 \times 2 \times 1}} + \dfrac{{{a_4}}}{{4 \times 3 \times 2 \times 1}} + \dfrac{{{a_5}}}{{5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_6}}}{{6 \times 5 \times 4 \times 3 \times 2 \times 1}} + \dfrac{{{a_7}}}{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1!}}\]
We now take common \[\dfrac{1}{2}\] from the RHS, \[\dfrac{1}{3}\]from all terms of RHS except first term and so on,
\[ \Rightarrow \dfrac{5}{7} = \dfrac{1}{2}\left[ {{a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right]} \right]\]
We now solve this as,
\[
\Rightarrow \dfrac{{5 \times 2}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow \dfrac{{10}}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow 1 + \dfrac{3}{7} = {a_2} + \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\]
We know that terms after \[{a_2}\] have values less than \[1\], so we get
\[{a_2} = 1\]
Now on solving further,
\[
\Rightarrow \dfrac{3}{7} = \dfrac{1}{3}\left[ {{a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right]} \right] \\
\Rightarrow \dfrac{9}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\
\Rightarrow 1 + \dfrac{2}{7} = {a_3} + \dfrac{1}{4}\left[ {{a_4} + ... + \dfrac{{{a_7}}}{7}} \right] \\
\]
We can see that terms after \[{a_3}\] have value less than \[1\], so we get
\[{a_3} = 1\]
On solving further we get the values of other unknown integers as,
\[{a_4} = 1\]
\[{a_5} = 0\]
\[{a_6} = 4\]
\[{a_7} = 2\]
Now we are asked to find the value of \[{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7}\], we find it as,
\[
{a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 1 + 1 + 1 + 0 + 4 + 2 \\
\Rightarrow {a_2} + {a_3} + {a_4} + {a_5} + {a_6} + {a_7} = 9 \]
Hence we get the answer as \[9\].
Note: Factorial of a number is a way to write the multiplication of consecutive terms in a decreasing way of that number. It is highly used in Permutation Combination, Binomial theorem, Probability theory and many more areas. It is important to be comfortable with its properties to be able to study math and statistics, especially the topics mentioned above further.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Which planet is known as the red planet aMercury bMars class 6 social science CBSE

Which state has the longest coastline in India A Tamil class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
