
Suppose a matrix has\[12\] identical elements, then what are the possible orders it can have?
A. \[3\]
B. \[1\]
C. \[6\]
D. None of the above.
Answer
557.1k+ views
Hint:
We know the multiplication of rows and columns of a matrix is the number of total entries in the matrix. So if a matrix is of the order\[\left( {m \times n} \right)\], the possible identical elements will be \[mn\]. For example if we take $6$ identical elements we can get \[4\] possible ordered matrices such as \[\left( {6 \times 1} \right), \left( {3 \times 2} \right), \left( {2 \times 3} \right), \left( {1 \times 6} \right)\].
Complete step by step solution:
To find all the possible orders of \[12\] identical elements we have to find all the ordered matrices of a natural number whose product is \[12\].
We have to find the two numbers whose product is $12$.
So the matrices that can be formed are of these orders \[\left( {1 \times 12} \right),\left( {2 \times 6} \right),\left( {3 \times 4} \right),\left( {4 \times 3} \right),\left( {6 \times 2} \right),\left( {12 \times 1} \right)\].
All of them will have the same 12 identical elements.
So, the possible orders it can have is \[6\].
Hence, option (c) is correct.
Note:
The common mistake all we do is sometimes we forget to count the repeating matrices such as $(1 \times 12)$ and $(12 \times 1)$, $(3 \times 4)$ and $(4 \times 3)$, $(2 \times 6)$ and $(12 \times 6)$. In this case rows and columns are interchanging so the matrix formation will be completely different. Hence, if we forget to count the repeating matrices the answer will be \[3\] which is completely wrong. We have to count all the possible matrices that can be formed.
We know the multiplication of rows and columns of a matrix is the number of total entries in the matrix. So if a matrix is of the order\[\left( {m \times n} \right)\], the possible identical elements will be \[mn\]. For example if we take $6$ identical elements we can get \[4\] possible ordered matrices such as \[\left( {6 \times 1} \right), \left( {3 \times 2} \right), \left( {2 \times 3} \right), \left( {1 \times 6} \right)\].
Complete step by step solution:
To find all the possible orders of \[12\] identical elements we have to find all the ordered matrices of a natural number whose product is \[12\].
We have to find the two numbers whose product is $12$.
So the matrices that can be formed are of these orders \[\left( {1 \times 12} \right),\left( {2 \times 6} \right),\left( {3 \times 4} \right),\left( {4 \times 3} \right),\left( {6 \times 2} \right),\left( {12 \times 1} \right)\].
All of them will have the same 12 identical elements.
So, the possible orders it can have is \[6\].
Hence, option (c) is correct.
Note:
The common mistake all we do is sometimes we forget to count the repeating matrices such as $(1 \times 12)$ and $(12 \times 1)$, $(3 \times 4)$ and $(4 \times 3)$, $(2 \times 6)$ and $(12 \times 6)$. In this case rows and columns are interchanging so the matrix formation will be completely different. Hence, if we forget to count the repeating matrices the answer will be \[3\] which is completely wrong. We have to count all the possible matrices that can be formed.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

